NOTICE:

This scan is being provided as part of Oregon State University’s effort to prevent
the spread of the COVID 19 virus. It is for your personal or instructional use only,
and is only intended for use during the time when University public health
measures prevent access to your personal copy or a copy on physical reserve at
the Library. Please discard this copy once you have access to your personal copy
or to the physical copy at the Library, and do not share it.

When available, we have included the copyright statement provided in the work
from which this copy was made.

If the work from which this copy was made did not include a formal copyright
notice, this work may still be protected by copyright law. Uses may be allowed
with permission from the rights-holder, or if the copyright on the work has
expired, or if the use is “fair use” or within another exemption. The user of this
work is responsible for determining lawful use.

" Design Patterns
ements of Reusable Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson

John Vlissides

A
b &

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Seoul Milan Mexico City Taipei

Paris

owns/Buildings/(‘onstruction by Christopher

2 nguage: T :
M.:'m:errmc':p:r‘-:gf T 977 by Christopher Alexander is reprinted by permission of
Alexan)

Oxford University Press, Inc.
< and sellers o distinguish their products
i ed by manufacturers and s¢ . .
B designations appear in this huu_k .nd Am-
he designations have been printed in initial caps

Many of the designat
are c)l{aimed as trademarks. Where thqsc
Wesley was aware of a trademark claim, t

or all caps.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information please contact: N

Corporate & Professional Publishing Group

Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Design Patterns : elements of reusable object-oriented software /
Erich Gamma . .. [et al.].
p. cm. - (Addison-Wesley professional computing series)
Includes bibliographical references and index.
ISBN 0-201-63361-2
1. Object-oriented programming (Computer science) 2. Computer
software--Reusability. I. Gamma, Erich.
QA76.64.D47 1994
005.1'2--dc20

I1. Sernes.

04.34264
Cip

Copyright © 1995 by Addison-Wesley Publishing Company

.:sl;‘;i:‘hls rescrve(_i. No.pan of this publication may be reproduced, stored in a retrieval
sy » Or transmitted, in any form, or by any means, electronic, mechanical, photocopy-

ing, recording, or otherwise, without the pri
: rwise, witl > prior consent of the publisher. Printed in the
United States of America. Published simultaneously in (‘:m:upl: .

Cover art © 1994 M.C. Escher / Cordon An - Baarn - Holl

and. All nights reserved
This book was typeset b

s Pt y the authors in 10-point Palatino using l.AT‘;.\'. FrameMaker,

ISBN 0-201-63361-2

Text printed on recycled and acid-free paper

34567891011 CR
: A W
Third printing, May 1005 98979695

Chapter 3

Creational Patterns

Creational design patterns abstract the instantiation process. They help make a system
independent of how its objects are created, composed, and rep;'esented. A class cre-
ational pattern uses inheritance to vary the class that’s instantiated, whereas an object
creational pattern will delegate instantiation to another object.

Creational patterns become important as systems evolve to depend more on object
composition than class inheritance. As that happens, emphasis shifts away from hard-
coding a fixed set of behaviors toward defining a smaller set of fundamental behaviors
that can be composed into any number of more complex ones. Thus creating objects
with particular behaviors requires more than simply instantiating a class.

There are two recurring themes in these patterns. First, they all encapsulate knowledge
about which concrete classes the system uses. Second, they hide how instances of these
classes are created and put together. All the system at large knows about the objects is
their interfaces as defined by abstract classes. Consequently, the creational patterns give
you a lot of flexibility in what gets created, who creates it, how it gets created, and when.
They let you configure a system with “product” objects that vary widely in structure
and functionality. Configuration can be static (that is, specified at compile-time) or

dynamic (at run-time).

titors. For example, there are cases when either
Prototype (117) or Abstract Factory (87) could be used profitably. At. other times thgy
are complementary: Builder (97) can use one of the other patte.rn's tq implement \.vhxch
components get built. Prototype (117) can use Singleton (127) in its implementation.

closely related, we'll study all five of them together
erences. We'll also use a common example—
e their implementations. The maze
ttern. Sometimes the game will be
the player will probably only have
s to solve and dangers to

Sometimes creational patterns are compe

Because the creational patterns are
to highlight their similarities and diff :
building a maze for a computer game—to illustrat
and the game will vary slightly from pattern to pa
our way out of a maze; in that case

simply to find y .
‘ times mazes contain problem

a local view of the maze. Some

81

4;-—_

Pl————

CHAPTER 3
g CREATIONAL PATTERNS

maze tllat has ml
ay pmvide a map Of the part Of the
overcome, alld t g

e"Pll(lmd. re many details of what can be in a maze and whether a maze game has a
We'll igno

11 just focus on how mazes get created. We define
gy muiitp cl)ef fol?x,ﬁf .I:nli:g?;li,k‘::g\ll; its neighbors; possible neighbors are another
asa .
:ol:::ea wall, or a door to another room. ki
. Door, and Wall define the components of | vt g
(i Rog fine on,ly the parts of these classes that are impo creating
examples;lr\'/e oie layers, operations for displaying and v.var.tdenng around in a maze,
:::ff,}xi inl\i‘:marltpt functionality that isn’t relevant to building the maze.

The following diagram shows the relationships between these classes:

»& MapSite
Enter()

A

C [|
81925 | Room Wall Door
Enter() Enter() Enter()
Maze SetSide() isOpen
rooms GetSide()
AddRoom()
RoomNo() roomNumber

Each room has four sides. We use an enumeration Di rect ionin C++ implementations
to specify the north, south, east, and west sides of a room:

enum Direction {North, South, East, West);
The S

malltalk implementations use corresponding symbols to represent these direc-
tions.

The class Mapsite is the com
To simplify the example,
depends on what you're
you try to enter a door,
the next room. If the d

mon abstract class for all the components of a maze
MapSite defines only one operation, Enter. Its meamnlgf
entering. If you enter a room, then your location changes.

then one of two things happen: If the door is open, you go int0
oor is closed, then you hurt your nose.
class MapSite {
public:
virtual void Enter() = 0;
}:

Enter provides a simple basis for m _ Yk enmpl&if
you are in a room and say “G ore sophisticated game operations.

7 . © East,” the game can simply determine which Map$ite
'S iImmediately to the east ang then call Enter on itl? %"he subclass-specific Eate*

L

ﬁ

CREATIONAL PATTERNS 83

operation will figure out whether

your location changed or
game, Enter could take the play

er object that’s moving a
Room is the concrete subclass of Ma
components in the maze. It maintai
room number. The number will ide

your nose got hurt. In a real
bout as an argument.
pSite that defines the ke
ns references to other Ma
ntify rooms in the maze.
class Room : public MapSite ({

public:

y relationships between
pSite objects and stores a

Room(int roomNo);

MapSite* GetSide(Direction) const ;
void SetSide (Direction, MapSite*) ;

virtual void Enter();

private:
MapSite* _sides([4]; ‘
int _roomNumber:; =
}:

} NODIRO

(
The following classes represent the wall or door that occurs on each side of a room.
class Wall : public MapSite ({
public:
wall ()3

virtual void Enter():;

)
}: :

)
class Door : public MapSite ({ .:
public: ?

Door (Room* = 0, Room* = 0);

virtual void Enter();
Room* OtherSideFrom(Room*) ;

private:
Room* _rooml;
Room* _room2;
bool _isOpen;
}:

¢ Maze
We need to know about more than just the parts of a maze. We rltl alsordgzxz ;i e
class to represent a collection of rooms. Maze can also find a particula
room number using its RoomNo operation.

CHAPTER 3
g4 CREATIONAL PATTERNS

class Maze {
public:
Maze();

void AddRoom (Room*) ;
Room* RoomNo (int) const;
private:
/7
}:

i i h, a hash table, or even a simple array.
mNo could do a look-up using a linear search, ' .
gz:)weowon’t worry about such details here. Instead, we’ll focus on how to specify the
components of a maze object.

Another class we define is MazeGame, which creates the maze. One straightforward
way to create a maze is with a series of operations that add components to a maze
and then interconnect them. For example, the following member function will create a
maze consisting of two rooms with a door between them:

Maze* MazeGame: :CreateMaze () {
Maze* aMaze = new Maze;

Room* rl = new Room(1l);
Room* r2 = new Room(2);
Door* theDoor = new Door(rl, r2);

aMaze->AddRoom(rl) ;
aMaze->AddRoom (r2) ;

rl->SetSide (North, new wall);
rl->SetSide(East, theDoor) ;

rl->SetSide (South, new wall);
rl->SetSide (West, new Wall);

r2->SetSide (North, new wall);
r2->SetSide (East, new wall);
r2->SetSide (South, new wall);
r2->SetSide (West , theDoor) ;

return aMaze;
}

Zl“jmf“g‘;“;';;s pretty complicated, considering that all it does is create a maze with
rdelcy co;ﬂd ere arltlez obvnou§ ways to make it simpler. For example, the Room con-
code somewh, uuhlg e the sides with walls ahead of time. But that just moves the
inflexibility. It eh’Z,S e. The real problem with this member function isn't its size butits
member ﬁ;nction :-f;ges 1t,he e l_ayoxft. Changing the layout means changing this
thing—or by chanlgingi:a y overriding it—which means reimplementing the whole

rts of it—which is error-prone and doesn’t promote reuse.

L;

——*

CREATIONAL PATTERNS 85

smaller. In particular, they will make j flexible, not necessarily
components of a maze.

In this case, the biggest barrier to change lies in hard-coding the classes that get instan-
tiated. The creational patterns provide different ways to remove explicit references to
concrete classes from code that needs to instantiate them:

o If CreateMaze calls virtual functions instead of constructor calls to create the
rooms, walls, and doors it requires, then you can change the classes that get
instantiated by making a subclass of MazeGame and redefining those virtual
functions. This approach is an example of the Factory Method (107) pattern.

¢ IfCreateMaze is passed an object as a parameter to use to create rooms, walls,
and doors, then you can change the classes of rooms, walls, and doors by passing
a different parameter. This is an example of the Abstract Factory (87) pattern.

¢ lfCreateMaze is passed an object that can create a new mazein its entirety using
operations for adding rooms, doors, and walls to the maze it builds, then you can
use inheritance to change parts of the maze or the way the maze is built. This is
an example of the Builder (97) pattern.

e If CreateMaze is parameterized by various prototypical room, door, and wall
objects, which it then copies and adds to the maze, then you can change the
maze’s composition by replacing these prototypical objects with different ones.
This is an example of the Prototype (117) pattern.

The remaining creational pattern, Singleton (127), can .ensur.e there’s on!y one maze
per game and that all game objects have ready access to it—without resorting to global
variables or functions. Singleton also makes it easy to extend or replace the maze
without touching existing code.

V10 NODIRO

“rie

T T

ABSTRACT FACTORY 87

ABSTRACT FACTORY Object Creational

Intent

Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

Also Known As
Kit

Motivation

Consider a user interface toolkit that supports multiple look-and-feel standards,
such as Motif and Presentation Manager. Different look-and-feels define different
appearances and behaviors for user interface “widgets” like scroll bars, windows,
and buttons. To be portable across look-and-feel standards, an application should
not hard-code its widgets for a particular look and feel. Instantiating look-and-

feel-specific classes of widgets throughout the application makes it hard to change
the look and feel later.

We can solve this problem by defining an abstract WidgetFactory class that de-
clares an interface for creating each basic kind of widget. There’s also an abstract
class for each kind of widget, and concrete subclasses implement widgets for
specific look-and-feel standards. WidgetFactory’s interface has an operation that
returns a new widget object for each abstract widget class. Clients call these oper-
ations to obtain widget instances, but clients aren’t aware of the concrete classes
they’re using. Thus clients stay independent of the prevailing look and feel.

O NODIWO

rs
-

-

P————f

88

CREATIONAL PATTERNS CHAPTER 3

i bclass of WidgetFactory for each look-fnd-feel standard.
g:l't:es:lsbil::snii?;fersr?ents the operations to create the.appmpm(e “fidSﬂ for the
look and feel. For example, the & regteScrollBar op.eratton on the Mof‘mldsetfx-
tory instantiates and returns a Motif scroll bar, while the corresponding operation
on the PMWidgetFactory returns a gcroll bar for l.’nesentation Manager. Clients
create widgets solely through the WldgetFadory mgerface and have no knowl-
edge of the classes that implement widgets for a particular look and feel. In other

words, clients only have to commit to an interface defined by an abstract class,
not a particular concrete class.

A WidgetFactory also enforces dependencies between the concrete widget classes.
A Motif scroll bar should be used witha Motif button and a Motif text editor, and
that constraint is enforced automatically as a consequence of using a MotifWid-
getFactory.

Applicability

Use the Abstract Factory pattern when

e a system should be independent of how its products are created, composed,
and represented.

e a system should be configured with one of multiple families of products.

e a family of related product objects is designed to be used together, and you
need to enforce this constraint.

e you want to provide a class library of products, and you want to reveal just
their interfaces, not their implementations.

Structure

———

ABSTRACT FACTORY 89
Participants
e AbstractFactory (WidgetFactory)

- declares an interface for operations that create abstract product objects.
¢ ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

- implements the operations to create concrete product objects.
e AbstractProduct (Window, ScrollBar)

- declares an interface for a type of product object.
¢ ConcreteProduct (MotifWindow, MotifScrollBar)

-~ defines a product object to be created by the corresponding concrete factory. g
- implements the AbstractProduct interface. §
e Client z
- uses only interfaces declared by AbstractFactory and AbstractProduct
classes. ‘
Collaborations
e Normally a single instance of a ConcreteFactory class is created at run-time.
This concrete factory creates product objects having a particular implementa-
tion. To create different product objects, clients should use a different concrete
factory.)
e AbstractFactory defers creation of product objects to its ConcreteFactory sub- ;
class. :
Consequences :

The Abstract Factory pattern has the following benefits and liabilities:

1. It isolates concrete classes. The Abstract Factory pattern helps you control the
classes of objects that an application creates. Because a factqry encapsn;ilates
the responsibility and the process of creating Product 9b)ects, itisolates }:: ;nt's
from implementation classes. Clients manipulate instances through t reir
abstract interfaces. Product class names are isolated in the implementation

of the concrete factory; they do not appear in client code.

2. It makes exchanging product families easy. The cla's,s of a conc.retezi fa;thc;sry ;]:E:sax;
only once in an application—that is, where. it s instantiated. v
easy to change the concrete factory an aPpllcatlon uses. }t can usI;ec e
product configurations simply by changing the concrete e;‘ctor)l;.()le o
abstract factory creates a complete family of products, the w swit}c)h o
family changes at once. In our user interface example, lwebcanwitchin oo
Motif widgets to Presentation Manager 'w1dget§ Slfran pruye. 8
corresponding factory objects and recreating the interface.

S e

R

CREATIONAL PATTERNS CHAPTER;

: - When product objects in a family
tes consistency among products anilyin
i ge’;:?g’nnzd to work together, it’simportant that an application use objects from
only one family at a time. AbstractFactory makes this easy to enforce.

ine new kinds of products is difficult. Extending abstract factories to
: g:oduc; few kinds of Products isn’t easy. Thats because the

interface fixes the set of products that can becmlwd. Supporting new kinds o
products requires extending the factory interface, which involves changing
the AbstractFactory class and all of its subclasses. We discuss one solutionto

this problem in the Implementation section.

90

Implementation
Here are some useful techniques for implementing the Abstract Factory pattem

1. Factories as singletons. An application typically needs only one instance of
ConcreteFactory per product family. So it’s usually best implemented as 2
Singleton (127).

2. Creating the products. AbstractFactory only declares an inferface for creating
products. It's up to ConcreteProduct subclasses to actually create them. The
most common way to do this is to define a factory method (see Factory
Method (107)) for each product. A concrete factory will specify its produds
by overriding the factory method for each. While this implementation i
simple, it requires a new concrete factory subclass for each product family
even if the product families differ only slightly.

If many product families are possible, the concrete factory can be imple
mented using the Prototype (117) pattern. The concrete factory is initialized
witha prototypical instance of each product in the family, and it createsanew
product by cloning its prototype. The Prototype-based approach eliminates
the need for a new concrete factory class for each new product family.

Here’s a way to implement a Prototype-based factory in Smalltalk. The

concrete factory stores the prototypes to be cloned in a dictionary calld
partCatalog. The method make: retrieves the prototype and clones it

make: partName

‘ (partCatalog at: partName) copy

The concrete factory has a method for adding parts to the catalog.

addPart ; PartTemplate named: partName
partCatalog at: partName put: partTemplate

Prototypes are added to the factory by identifying them with a symbo

ar
actory addpart aPrototype named: $ACMEWidget

A variation on the Proto

treatclasses as first-clags ype-based approach is possible in languages

objects (Smalltalk and Objective C, forexampie.

———

ABSTRACT FACTORY 91

can think of a class in these languages as a degenerate factory that creates
only one kind of product. You can store classes inside a concrete facto

that create the various concrete products in variables, much like prototypg
These classes create new instances on behalf of the concrete factory. You
define a new factory by initializing an instance of a concrete factory with
classes of products rather than by subclassing. This approach takes advantage

of language characteristics, whereas the pure Prototype-based approach is
language-independent.

Like the Prototype-based factory in Smalltalk just discussed, the class-based
version will have a single instance variable partCatalog, which is a dictio-
nary whose key is the name of the part. Instead of storing prototypes to be

cloned, partCatalog stores the classes of the products. The method make :
now looks like this:

make: partName
" (partCatalog at: partName) new

10 NODIRY

- Defining extensible factories. AbstractFactory usually defines a different op-
eration for each kind of product it can produce. The kinds of products are
encoded in the operation signatures. Adding a new kind of product requires
changing the AbstractFactory interface and all the classes that depend on it.

A more flexible but less safe design is to add a parameter to operations that

create objects. This parameter specifies the kind of object to be created. It

could be a class identifier, an integer, a string, or anything else that identifies

the kind of product. In fact with this approach, AbstractFactory only needs \
a single “Make” operation with a parameter indicating the kind of object :
to create. This is the technique used in the Prototype- and the class-based o
abstract factories discussed earlier.

This variation is easier to use in a dynamically typed language like Smalltalk
than in a statically typed language like C++. You can use it in C++ on.ly when
all objects have the same abstract base class or when the product objects can
be safely coerced to the correct type by the client that requested them. The
implementation section of Factory Method (107) shows how to implement
such parameterized operations in C++. :

But even when no coercion is needed, an inherent problem remains: All
products are returned to the client with the same al?stract i.nterface as nge}n
by the return type. The client will not be able to differentiate or mal;::lsa e
assumptions about the class of a product. If clients need to perform sut rfass-
specific operations, they won’t be accessible through fhe abstragt inte Ec;
Although the client could perform a downcast (e.g., with dynami CECSSThis
C++), that’s not always feasible or safe, because the czlowpcast can fail.

is the classic trade-off for a highly flexible and extensible interface.

P—'

CHAPTER 3
92 CREATIONAL PATTERNS
le Code .
San:s:'ll apply the Abstract Factory pattern to creating the mazes we discussed at the
beginning of this chapter.

Class MazeFactory can create components of mazes. It builds rooms, walls, and

doors between rooms. It might be used by a pmgr?u;‘tihatt :ds pl:;'s.for mazes
from a file and builds the corresponding maze. Or it might be used program
that builds mazes randomly. Programs that build mazes take a MazeFactoryas

an argument so that the programmer can specify the classes of rooms, walls, and
doors to construct.

class MazeFactory ({
public:
MazeFactory () ;

virtual Maze* MakeMaze() const
{ return new Maze;)
virtual Wall* Makewall() const
{ return new wWall;)
virtual Room* MakeRoom(int n) const
{ return new Room(n);)}
virtual Door* MakeDoor (Room* rl, Room* r2) const
{ return new Door(rl, r2);)

Recall that the member function CreateMaze (page 84) builds a small maze
consisting of two rooms with a door between them. Creat eMaze hard-codes the
class names, making it difficult to create mazes with different components.

Here’s a version of CreateMaze that remedies that shortcoming by taking a
MazeFactoryasa parameter:

Maze* MazeGame: :CreateMaze (MazeFactory& factory) (
Maze* aMaze = factory.MakeMaze () ;
Room* rl = factory.MakeRoom(1) ;
Room* r2 = factory.MakeRoom(2) ;
Door* aDoor = factory.MakeDoor (rl, r2);

aMaze->AddRoom(rl) ;
aMaze->AddRoom (r2) ;

r1->SetSide(North, factory.MakeWall()):
r1->Setside(East, aDoor) ;

r1->SetSide(South. factory.MakeWall()):
r1->SetSide(west, factory.MakeWall()):

‘——————————————————t::lIIIIIIIIIIIIIIIIIII.IIIII

ABSTRACT FACTORY 93

r2->SetSide (North, factory.Makewall());
r2->SetSide (East, factory.MakeWall())"
r2->SetSide (South, factory.MakeWall();'
r2->SetSide (West, aDoor) ; '

return aMaze;

We can create EnchantedMazeFactory, a factory for enchanted mazes, by sub-
classing bf!azeFact ory. EnchantedMazeFactory will override different mem-
ber functions and return different subclasses of Room, Wall, etc.

class EnchantedMazeFactory :
public:

EnchantedMazeFactory () ;

public MazeFactory {

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()); }

O NODIWO

virtual Door* MakeDoor (Room* rl, Room* r2) const o
{ return new DoorNeedingSpell(rl, r2);)} ¢

protected:

Spell* CastSpell() const; ;
}:

Now suppose we want to make a maze game in which a room can have a bomb
set in it. If the bomb goes off, it will damage the walls (at least). We can make a
subclass of Room keep track of whether the room has a bomb in it and whether the
bomb has gone off. We’ll also need a subclass of wall to keep track of the damage
done to the wall. We'll call these classes RoomWithABomb and Bombedwall.

~t

(Rl

S

The last class we’ll define is BombedMazeFactory, a subclass of MazeFactory
that ensures walls are of class Bombedwall and rooms are of class
RoomWit hABomb. BombedMazeFactory only needs to override two functions:

>

wall* BombedMazeFactory::MakewWall () comst {
return new Bombedwall;

)

Room* BombedMazeFactory::MakeRoom(int n) const ({
return new RoomWithABomb (n);
)

To build a simple maze that can contain bombs, we simply call CreateMaze with
a BombedMazeFactory.

MazeGame game;
BombedMazeFactory factory;

qume.CreateMaze(factory);

P

94

CHAPTER 3
CREATIONAL PATTERNS

teMaze can take an instance of EnchantedMazeFactory iust as well to
Create

build enchanted mazes. ' 5
Notice that the MazeFactory is justa collection of factoryt:netho:;omn:enuu:

t common way to implement the Abs-tract Factory pattern. ¢
ey Factory is not an abstract class; thus it acts as both the AbstnctFactorym
glaezgonaeter-‘actory. This is another common implementation for simple applica-
tions of the Abstract Factory pattern. Because the MazeFactory isa concrete class
consisting entirely of factory methods, it’s easy to make a new MazeFactory by
making a subclass and overriding the operations that need to change.

CreateMaze used the Set Side operation on rooms to specify their sides. If it
creates rooms with a BombedMazeFactory, tl.\en the maze will be made up of
RoomWithABomb objects with Bombedwall sides. If RoomWi thABomb had to
access a subclass-specific member of BombedWall, then it would have.to cast a
reference to its walls from wWall* to Bombedwall*. This downcasting is safeas
long as the argument is in fact a Bombedwa 11, which is guaranteed to be true if
walls are built solely with a BombedMazeFactory.

h p B of
Dynamically typed languages such as Smalltalk don’t require downcasting,
course, but }t,hey might produce run-time errors if they encounter a Wall where

they expect a subclass of wa11. Using Abstract Factory to build walls helps prevent
these run-time errors by ensuring that only certain kinds of walls can be created.

Let’s consider a Smalltalk version of MazeFactory, one with a single make
operation that takes the kind of object to make as a parameter. Moreover, the
concrete factory stores the classes of the products it creates.

First, we'll write an equivalent of CreateMaze in Smalltalk:

CreateMaze: aFactory
| rooml room2 abDoor |
rooml = (aFactory make: #room) number: 1.
room2 = (aFactory make: #room) number: 2.
aDoor = (aFactory make: #door) from: rooml to: room2.

rooml atSide:
rooml atSide:
rooml atSide:

#north put: (aFactory make: #wall).
#east put: aDoor.

#south put: (aFactory make: #wall).

rooml atSide: #west put: (aFactory make: #wall).
room2 atSide: #north put: (aFactory make: #wall).
room2 atSide: #east put: (aFactory make: #wall).

room2 atSide: #south put: (aFactory make: #wall).
room2 atSide: #west put: aDoor.

" Maze new addRoom: rl; addRoom:

As wediscussed in th,
Instance variable
the component.

r2; yourself

e Implementation section, MazeFactory needsﬁ'\l)'“iﬂsk
partCatalog to provide a dictionary whose key is the class o
Also recall how we implemented the make : method:

make: partName

(partCatalog at: partName) new

f—

ABSTRACT FACTORY 95

Now we can create aMazeFactory and use it to implement createMaze. We'll
create the factory using a method createMazerac tory of class MazeGame.

createMazeFactory
" (MazeFactory new
addPart: Wall named: #wall;
addPart: Room named: #room;
addPart: Door named: #door;
yourself)

A BombedMazeFactory or EnchantedMazeFactory is created by associating

different classes with the keys. For example, an EnchantedMazeFac tory could
be created like this:

createMazeFactory %
" (MazeFactory new
addPart: Wall named: #wall;
addPart: EnchantedRoom named: #room; T
addPart: DoorNeedingSpell named: #door;
yourself) ~

Known Uses

InterViews uses the “Kit” suffix [Lin92] to denote AbstractFactory classes. It de-
fines WidgetKit and DialogKit abstract factories for generating look-and-feel-
specific user interface objects. InterViews also includes a LayoutKit that generates
different composition objects depending on the layout desired. For. gxamp.le, a)
layout that is conceptually horizontal may require different composition objects
depending on the document’s orientation (portrait or landscape).

ET++ [WGMS88] uses the Abstract Factory pattern to achieve portability across -
different window systems (X Windows and SunView, for. example). The Win- A
dowSystem abstract base class defines the interface for creating objects that repre-

sent window system resources (MakeWindow, MakeFont, M.a‘keCs)lor, for exam-

ple). Concrete subclasses implement the interfaces for a specific window system.

At run-time, ET++ creates an instance of a concrete WindowSystem subclass that

creates concrete system resource objects.

Related Patterns

AbstractFactory classes are often implemented wit_h factory methods (Factory
Method (107)), but they can also be implemented using Prototype (117).

A concrete factory is often a singleton (Singleton (127)).

BUILDER 97

BUILDER Object Creational

Intent

Separate the construction of a complex object from its representation so that the
same construction process can create different representations.

Motivation

A reader for the RTF (Rich Text Format) document exchange format should be able
to convert RTF to many text formats. The reader might convert RTF documents
into plain ASCII text or into a text widget that can be edited interactively. The
problem, however, is that the number of possible conversions is open-ended. So
it should be easy to add a new conversion without modifying the reader.

A solution is to configure the RTFReader class with a TextConverter object that
converts RTF to another textual representation. As the RTFReader parses the RTF
document, it uses the TextConverter to perform the conversion. Whenever the
RTFReader recognizes an RTF token (either plain text or an RTF control word), it 3
issues a request to the TextConverter to convert the token. TextConverter objects

are responsible both for performing the data conversion and for representing the

token in a particular format.

13 NODIWO

-

Subclasses of TextConverter specialize in different conversions and formats. For 03
example, an ASCIIConverter ignores requests to convert anything except plain 2
text. A TeXConverter, on the other hand, will implement operations for all requests :
in order to produce a TEX representation that captures all the stylistic informat.ion -
in the text. A TextWidgetConverter will produce a complex user interface object
that lets the user see and edit the text.

ParseRTF() @ omnde ConvertCt)
s ConvertFontChange(Font)
. ConvertParagraphi)
A |
whie (1= he next oken)
[| Sy (- T - |
OMI - Converter extWidgetConverter
busider - >ConvertCharacter(t Char) ASCRConverter i
FONT ConvertCh)
busider - >ConvertFontChange(t Font) ConvenCharacter(char) ConvertCh ¢ Fort)
PARA ConvertFontChange(Font) ConverntFontChange(
E) GetASCilText() 0 ConvertParagraph()
! ' GetTeXText) CHTmeNkion) |

acassraisiciabEE

98

CREATIONAL PATTERNS CHAPTER 3

Each kind of converter class takes the mechar}ism for creating and assembling a
complex object and puts it behind an abstract.mterface. The converter is separate
from the reader, which is responsible for parsing an RTF document.

ilder pattern captures all these relationships. Each converter class is called
:Tufi;lltiﬂer inpthe pattel:n, and the reader is callec.l the dlre'ctor. Applied to this
example, the Builder pattern separates the algorithm for interpreting a textual
format (that is, the parser for RTF documents) from how a converted format gets
created and represented. This lets us reuse the RTFReader’s parsing algorithm
to create different text representations from RTF documents—ijust configure the
RTFReader with different subclasses of TextConverter.

Applicability

Use the Builder pattern when

e the algorithm for creating a complex object should be independent of the
parts that make up the object and how they’re assembled.

e the construction process must allow different representations for the object

that’s constructed.
Structure
Director <>bulldov Builder
Construct) o BuildPart()
for all objects in strueu;m { +
! [s e | ConcreteBullder |- --==--~ -E
' BuildPart()
GetResun()
Participants

® Builder (TextConverter)

~ specifies an abstract interface for creating parts of a Product object.

—ﬁ—

BUILDER 99

o ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)

- constructs and assembles

' parts of the product by implementing the Builder
interface.
- defines and keeps track of the representation it creates.

- provides an interface for retrieving the product (e.g., GetASCIIText, Get-
TextWidget).

o Director (RTFReader)
= constructs an object using the Builder interface.
o Product (ASCIIText, TeXText, TextWidget)

- represents the complex object under construction. ConcreteBuilder builds
the product’s internal representation and defines the process by which it’s
assembled.

0030

- includes classes that define the constituent parts, including interfaces for
assembling the parts into the final result.

Collaborations
o The client creates the Director object and configures it with the desired Builder
object.
¢ Director notifies the builder whenever a part of the product should be built.
¢ Builder handles requests from the director and adds parts to the product.)
¢ The client retrieves the product from the builder. 0

The following interaction diagram illustrates how Builder and Director cooperate
with a client.

aClient aDirector aConcreteBuilder
= : :
new ConcreteBuilder B e T RS e
| new Director(aBuiider) _E]
Construct() BuildPartA()
BuildPartB()
BuildPartC()
GetResult()

P—_——

100 CREATIONAL PATTERNS CHAPTER 3

Consequences
Here are key consequences of the Builder pattern:

1. It lets you vary a product’s internal representation. The‘Builder object provides
the director with an abstract interface for constructing the product. The in-
terface lets the builder hide the representation and internal structure of the
product. It also hides how the product gets assembled. Because the product

is constructed through an abstract interface, all you have to do to change the

product’s internal representation is define a new kind of builder.

2. It isolates code for construction and representation. The Builder pattern improves
modularity by encapsulating the way a complex object is constructed and
represented. Clients needn’t know anything about the classes that define the
product’s internal structure; such classes don’t appear in Builder’s interface.
Each ConcreteBuilder contains all the code to create and assemble a partic-
ular kind of product. The code is written once; then different Directors can
reuse it to build Product variants from the same set of parts. In the earlier
RTF example, we could define a reader for a format other than RTF, say,
an SGMLReader, and use the same TextConverters to generate ASCIIText,
TeXText, and TextWidget renditions of SGML documents.

3. It gives you finer control over the construction process. Unlike creational pat-
terns that construct products in one shot, the Builder pattern constructs the
product step by step under the director’s control. Only when the product
is finished does the director retrieve it from the builder. Hence the Builder
interface reflects the process of constructing the product more than other e
ational patterns. This gives you finer control over the construction process
and consequently the internal structure of the resulting product.

Implementation

Typically there’s an abstract Builder class that defines an operation for each con-
Kogent th?tB“ q]‘:‘dm’ may ask it to create. The operations do nothing by default.
oncreteBuilder class overrides o ; S ik
creating. perations for components it’s interes
Here are other implementation issues to consider:

1. g ssembly and construction interface. Builders construct their products in step
tg' ;sl:ep f“:l;‘:hlon. Thel‘e'fore the Builder class interface must be general enough

A k ow t - c0_nstructxon of products for all kinds of concrete builders.
Pm:e);sde:'gnog Sue concerns the model for the construction and assembly
pended.to tl}T:e ilo(;vhen.e the results of construction requests are simplj_! >
s, ap l:jd 1S usually sufficient. In the RTF example, the builder

But sometim pPpends .the next token to the text it has converted so far.
it i theel\fi You might need access to parts of the product Consml.ded
aze example we presentin the Sample Code, the MazeBuilder

TR,

BUILDER 101

interface lets you add a door between existi
as parse trees that are built bottom-up are another example. In that case,

the builder would return child nodes to the director, whi
) ch th
them back to the builder to build the parent nodes. en would pass

ng rooms. Tree structures such

2. Why no abstract class for products? In the common case, the products produced
by the concrete builders differ so greatly in their representation that there
is little to gain from giving different products a common parent class. In
the RTF example, the ASCIIText and the TextWidget objects are unlikely to
have a common interface, nor do they need one. Because the client usually
configures the director with the proper concrete builder, the client is in a
position to know which concrete subclass of Builder is in use and can handle
its products accordingly.

3. Empty methods as default in Builder. In C++, the build methods are intention-
ally not declared pure virtual member functions. They’re defined as empty
methods instead, letting clients override only the operations they’re inter-
ested in. S

T NODIWO

Sample Code

We'll define a variant of the CreateMaze member function (page 84) that takes a
builder of class MazeBuilder as an argument.

The MazeBuilder class defines the following interface for building mazes:

class MazeBuilder (
public:)
virtual void BuildMaze() { }
virtual void BuildRoom(int room) { } ‘
virtual void BuildDoor {int roomFrom, int roomTo) { } -
5
virtual Maze* GetMaze() { return 0; }

protected:
MazeBuilder();

};
This interface can create three things: (1) the maze, (2) rooms with a particu_lar
room number, and (3) doors between numbered rooms. The GetMaze operation
returns the maze to the client. Subclasses of MazeBuilder will override this
operation to return the maze that they build.
All the maze-building operations of MazeBuilder do pothing by default. '}I\'l(:(eiy’re
not declared pure virtual to let derived classes override only those methods in
which they’re interested.

Given the MazeBuilder interface, we can ch
function to take this builder as a parameter.

ange the CreateMaze member

PERsmmm———

102 CREATIONAL PATTERNS CHAPTER 3

Builder& builder) (
Maze* MazeGame::CreateMaze (Maze

puilder.BuildMaze():

builder.BuildRoom(1);
builder.BuildRoom(Z);
builder.BuildDoor (1, 2);

return builder.GetMaze();
}

his version of CreateMaze with the original. Notice how the builder
ﬁ%fsp:}i tintemal representation of the Maze—that is, the classes that define
rooms, doors, and walls—and how these parts are assembled to complete the
final maze. Someone might guess that there are classes for representing rooms
and doors, but there is no hint of one for walls. This makes it easier to change the
way a maze is represented, since none of the clients of MazeBuilder hastobe

changed.

Like the other creational patterns, the Builder pattern encapsulates how ob-
jects get created, in this case through the interface defined by MazeBuilder.
That means we can reuse MazeBuilder to build different kinds of mazes. The
CreateComplexMaze operation gives an example:

Maze* MazeGame::CreateComplexMaze (MazeBuilder& builder) (
builder.BuildRoom(1) ;
ol " oen
builder.BuildRoom(1001) ;

return builder.GetMaze();
)

Note that_MazeBui lder does not create mazes itself; its main purpose is just to
define an interface for creating mazes. It defines empty implementations primarily
for convenience. Subclasses of MazeBu i 1der do the actual work.

The subclass StandardMazeBuilder is an implementation that builds simple
mazes. It keeps track of the maze it’s building in the variable .currentMaze.

class StandardMazeBuilder : public MazeBuilder (
public:

StandardMazeBuilder():

v%rtual void BuildMaze();
v*rtual void BuildRoom(int) ;
virtual void BuildDoor (int,

int);
X virtual Maze+ GetMaze();
private:]
Direction CommonWall(Room', Room*) ;
’

: Maze+ ~CurrentMaze;
H

TR,

BUILDER 103

The StandardMazeBui lder constructor simply initializes currentMaze.

StandardMazeBuilder::StandardMazeBuilder () {
~cfurrentMaze = 0;
}

BuildMaze instantiates a Maze that other operations will assemble and eventu-
ally return to the client (with GetMaze).

void StandardMazeBuilder::BuildMaze () {

~currentMaze = new Maze;
}

Maze *StandardMazeBuilder::GetMaze ()

Maze* maze = _currentMaze;
return maze;

{

The BuildRoom operation creates a room and builds the walls around it:

void StandardMazeBuilder::BuildRoom (int n) {
if (!_currentMaze->RoomNo(n)) {
Room* room = new Room(n);
~currentMaze->AddRoom(room) ;

room->SetSide (North, new Wall);
room->SetSide {South, new Wall);
room->SetSide (East, new Wall);
room->SetSide (West, new Wall);

)

To build a door between two rooms, StandardMazeBuilder looks up both
rooms in the maze and finds their adjoining wall:

void StandardMazeBuilder::BuildDoor (int nl, int n2) {
Room* rl = _currentMaze->RoomNo (nl);
Room* r2 = _currentMaze->RoomNo (n2);
Door* d = new Door(rl, r2);

rl->SetSide (Commonwall(rl,xr2), d);
r2->SetSide (Commonwall (r2,rl), d);:
)

Clients can now use CreateMaze in conjunction with StandardMazeBuilder
to create a maze:

NOD3IWO

L
¥ A

P e < T

9

104 CREATIONAL PATTERNS CHAPTER3

Maze* maze;
MazeGame game;. ‘ .
standardMazeBuilder builder;

game.CreateMaze(builder);
maze = builder.GetMaze();

uld have put all the StandardMazeBuilder operations in Maze and let
‘elgte:h“;daze builg itself. But making Maze srpaller makes it easier to understand
and modify, and StandardMazeBuilder is easy to separate ﬁom Maze. Most
importantly, separating the two lets you have a variety of MazeBuilders, each
using different classes for rooms, walls, and doors.

A more exotic MazeBui lder is Count ingMazeBuilder. This builder doesn't
create a maze at all; it just counts the different kinds of components that would
have been created.

class CountingMazeBuilder : public MazeBuilder (
public:
CountingMazeBuilder();

virtual void BuildMaze();

virtual void BuildRoom(int);

virtual void BuildDoor(int, int);
virtual void Addwall(int, Direction);

void GetCounts(int&, int&) const;
private:

int _doors;

int _rooms;
}:

The constructor initializes the counters, and the overridden MazeBui 1der oper
ations increment them accordingly.

CountingMazeBuilder::CountingMazeBuild.r (O {
~rooms = _doors = 0;
}

void CouncingMazeBuilder::BuildRoom (int) {
~fooms++;

}

void CountionazeBuilder:

:Buildboo
3 g 1 r (int, int) {
}

void CountingMazeBuilder::

intg rooms, int& doors
) const {

GetCounts (

rooms = _rooms;
doors = —doors;

TR,

BUILDER 105
Here’s how a client might use a Count i ngMazeBuilder:

int rooms, doors;
MazeGame game;
CountingMazeBuilder builder;

game.CreateMaze (builder);
builder.GetCounts (rooms, doors) ;

cout << *The maze has *

<< rooms << " rooms and "
<< doors << " doors" <« endl;

Known Uses

The RTF converter application is from ET++ [WGMSS]. Its text building block
uses a builder to process text stored in the RTF format.

13 NODINO

Builder is a common pattern in Smalltalk-80 [Par90]:

e The Parser class in the compiler subsystem is a Director that takes a Pro- '
gramNodeBuilder object as an argument. A Parser object notifies its Pro-
gramNodeBuilder object each time it recognizes a syntactic construct. When
the parser is done, it asks the builder for the parse tree it built and returns it
to the client.

e ClassBuilder is a builder that Classes use to create subclasses for themselves.
In this case a Class is both the Director and the Product.)

e ByteCodeStream is a builder that creates a compiled method as a byte ar- 9
ray. ByteCodeStream is a nonstandard use of the Builder pattern, because
the complex object it builds is encoded as a byte array, not as a nqrmal
Smalltalk object. But the interface to ByteCodeStream is tyPlcal of a builder,
and it would be easy to replace ByteCodeStream with a different class that
represented programs as a composite object.

The Service Configurator framework from the Adaptive Communications 'Env1-
ronment uses a builder to construct network service components th.::lt are linked
into a server at run-time [SS94]. The components are described w%th a Fonﬁg-
uration language that’s parsed by an LALR(1) parser. The semantic actions of
the parser perform operations on the builder that add information to the service
component. In this case, the parser is the Director.

Related Patterns

Abstract Factory (87) is similar to Builder i)
objects. The prirn):ary difference is that the Builder pattern focuses on constructinga

j hasis is on families of product
complex object step by step. Abstract Factory’s emp
Objefts (eitl’\gtsiml:)ley or complex). Builder returns the product as a final step,

n that it too may construct complex

e e

PE—————

106 CREATIONAL PATTERNS CHAPTER 3

but as far as the Abstract Factory pattern is concerned, the product gets returned

immediately.

A Composite (163) is what the builder often builds.

FACTORY METHOD 107

FACTORY METHOD

Class Creational

Intent

Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Also Known As

Virtual Constructor

Motivation

Frameworks use abstract classes to define and maintain relationships between
objects. A framework is often responsible for creating these objects as well.

Consider a framework for applications that can present multiple documents to
the user. Two key abstractions in this framework are the classes Application and
Document. Both classes are abstract, and clients have to subclass them to realize
their application-specific implementations. To create a drawing application, for
example, we define the classes DrawingApplication and DrawingDocument. The
Application class is responsible for managing Documents and will create them as
required—when the user selects Open or New from a menu, for example.

Because the particular Document subclass to instantiate is application-specific, the
Application class can’t predict the subclass of Document to instantiate—the ‘A.‘P'
plication class only knows when a new document should be created, no.t what k.md
of Document to create. This creates a dilemma: The framework must 1n.stant1ate
classes, but it only knows about abstract classes, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsulates the knowledge
of which Document subclass to create and moves this knowledge out of the
framework.

CreateDocument() Docm;g;c = CreateDocument();
NewDocument() o-f--=--=----~ docs. L
OpenDocument() doc->0Open():

CreateDocument() 1=~ =~~~""""]

MyDocument e - - - - - - - - 4 MyApplication
return new MyDocument |

L2 NOD3IWO

I——

108 CREATIONAL PATTERNS CHAPTER 3

e an abstract CreateDocument operation on Appli-

Application subclasses redefin .
ca}:il:m to return the appropriate Document subclass. Once an Application sub-

class is instantiated, it can then instantiate application-specific Documents with-
out knowing their class. We call CreateDocument a factory method because it's

responsible for #manufacturing” an object.

Applicability
Use the Factory Method pattern when
e a class can’t anticipate the class of objects it must create.
o a class wants its subclasses to specify the objects it creates.

o classes delegate responsibility to one of several helper subclasses, and you
want to localize the knowledge of which helper subclass is the delegate.

Structure
Creator
Product T
AnOperation() ' O-fevenns ; w-#mj
ConcreteProduct '~ ---------- oS
FactoryMethod() ©O-f == ===* < Mmmli
Participants

e Product (Document)

— defines the interface of objects the factory method creates.
® ConcreteProduct (MyDocument)

— implements the Product interface.
¢ Creator (Application)

— declares the factory method, which returns an object of type Product. Cre

ator may also define a default i
ult im 1 3 t
returns a default ConcreteProd uc'P :blf\entatnon of the factory method tha

may call the factory method to create a Product object.

FACTORY METHOD 109
¢ ConcreteCreator (MyApplication)

~ overrides the factory method to return an instance of a ConcreteProduct.

Collaborations

. Cm'ator relies on its subclasses to define the factory method so that it returns
an instance of the appropriate ConcreteProduct.

Consequences

Factory methods eliminate the need to bind application-specific classes into your
code. The code only deals with the Product interface; therefore it can work with
any user-defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass
the Creator class just to create a particular ConcreteProduct object. Subclassing is
fine when the client has to subclass the Creator class anyway, but otherwise the
client now must deal with another point of evolution.

3 NOD3INOQ

p

I3

Here are two additional consequences of the Factory Method pattern:

1. Provides hooks for subclasses. Creating objects inside a class with a factory P
method is always more flexible than creating an object directly. Factory
Method gives subclasses a hook for providing an extended version of an
object.
In the Document example, the Document class could define a factory method y
called CreateFileDialog that creates a default file dialog object for opening an
existing document. A Document subclass can define an application-specific
file dialog by overriding this factory method. In this case the fgctory method
is not abstract but provides a reasonable default implementation. 3

2. Connects parallel class hierarchies. In the examples we.a've Cons,idered so far, the
factory method is only called by Creators. But this doesn’t have to be the
case; clients can find factory methods useful, especially in the case of parallel
class hierarchies. . b
Parallel class hierarchies result when a class delegates some of its resl?ons1b$
ities to a separate class. Consider graphical figures that can be n;anll?ula:h
interactively; that is, they can be stretched, moved, or rotat(;t using : m:
mouse. Implementing such interactions isn’t always easy. It often requ

storing and updating information that records the state of the manipulation

i i ipulation; therefore
at a given time. This state is needed only during manipu :
it nefdn’t be kept in the figure object. Moreover, different figures behave

differently when the user manipulates them. Fc?r exa}r‘nple, s;nhfmc:mmgg e; :;et
figure might have the effect of moving an endpoint, whereas

figure may change its line spacing.
With these constraints, it’s better t
implements the interactionand keeps track of an

o use a separate Manipulator obiect that
y manipulation-Specxﬁc state

N PaEenT 1

——7

CHAPTER
110 CREATIONAL PATTERNS ’
ill use different Manipulator subclasses to
resulting Manipulator class hierarchy
lass hierarchy:

that's needed. Different figures W
handle particular interactions. ’_I'he
parallels (at least partially) the Figure ¢

e e | -
Figure
CreateManipulator()
Orag()
ik L : I
_T - LineManipulator TextManipulator
CreateManipulator() CroateManipulator() Drag() Orag()
; 1 UpChck() 1o UpClck

The Figure class provides a CreateManipulator factory method that lets
clients create a Figure’s corresponding Manipulator. Figure subclasses over-
ride this method to return an instance of the Manipulator subclass that's right
for them. Alternatively, the Figure class may implement CreateManipulator
to return a default Manipulator instance, and Figure subclasses may simply
inherit that default. The Figure classes that do so need no corresponding
Manipulator subclass—hence the hierarchies are only partially parallel.

Notice how the factory method defines the connection between the two class
hierarchies. It localizes knowledge of which classes belong together.

Implementation
Consider the following issues when applying the Factory Method pattern:

1. Two major varieties. The two main variations of the Factory Method patternare
(1) .the case when the Creator class is an abstract class and does not provide
an implementation for the factory method it declares, and (2) the case when
the Creator is a concrete class and provides a default implementation for

g:!ef factory method. It’s also possible to have an abstract class that defines 2
ault implementation, but this is less common.

'II":)\e ngaxzt casl:e requires subclasses to define an implementation, because there's
unforesce’::b:e gefault. It gets around the dilemma of having to instantiate
i methode lasses. In the second case, the concrete Creator uses the fac
i SR primarily for .ﬂexibility. It’s following a rule that says, “Create

a separate operation so that subclasses can override the way they T

created.” This rule ensures th i bclasses
_ ' at designers of change the dass
of objects their parent class instantia%:s if :e:e:sary . g

2P }
: :;n;teetnhﬁ factory methods. Another variation on the pattern lets the fac-
create multiple kinds of products. The factory method takes 2

—_____________TZZZIIIIIIIII.IIIIII

FACTORY METHOD 11 1

Thl)ocuUme:t an extra parameter to specify the kind of document to create
e Unidraw graphical editing framework [VL90] us i '

. A _ es this a ch f
reconstructing objects saved on disk. Unidraw defines aCreat orpcIl);:sa withoa:
:;ctoﬁrz methoc.jlﬁC re }i t elthat takes a class identifier as an argument. The class

entitier specifies the class to instantiate. When Unid 1 obj
disk, it writes out the class i P Stk

dentifier first and then its instan i
:) ce variables.
When it reconstructs the object from disk, it reads the class identifier first.

.Ome.the class identifier is read, the framework calls Create, passing the
identifier as the parameter. Create looks up the constructor for the corre-
sponding class and uses it to instantiate the object. Last, Create calls the

ob)ect’s Read operation, which reads the remaining information on the disk
and initializes the object’s instance variables.

A parameterized factory method has the following general form, where
MyProduct and YourProduct are subclasses of Product:

12 NODINO

.

class Creator ({
public:
virtual Product* Create(Productld); o

)3

Product* Creator::Create (ProductId id) ({
if (id MINE) return new MyProduct;
if (id YOURS) return new YourProduct; Y
// repeat for remaining products...

~

return 0;

) ‘.

SR sTv

Overriding a parameterized factory method lets you easily and selectively
extend or change the products that a Creator produces. You can intrngce
new identifiers for new kinds of products, or you can associate existing
identifiers with different products.
For example, a subclass MyCreator could swap MyProduct and YourProd-
uct and support a new TheirpProduct subclass:

Product* MyCreator::Create (ProductId id) {

if (id == YOURS) return new MyProduct;

if (id == MINE) return new YourProduct;
// N.B.: switched YOURS and MINE

if (id == THEIRS) return new TheirProduct;

i i fail
return Creator::Create(id); // called if all others

)

Notice that the last thing this operatio
class. That's because MyCreator : :Create

n does is call Create on the parent
handles only YOURS, MINE, and

e

112

3 language—speciﬁc variants and issu

CHAPTER
CREATIONAL PATTERNS 3

rent class. It isn't interested in other classes.

differently than the pare! :
'II-'llil;:'li':?’Iy(l:reat:oii extends the kinds of products created, and it defers re-
sponsibility for creating all but a few products to its parent.

es. Different languages lend themselves to

other interesting variations and caveats.

Smalltalk programs often use a method that returns the dass of the object
to be instantiated. A Creator factory method can use this value to create
a product, and a ConcreteCreator may store or even compute this value.
The result is an even later binding for the type of ConcreteProduct to be

instantiated.

A Smalltalk version of the Document example can define a documentC lass
method on Application. The documentClass method returns the
proper Document class for instantiating documents. The implementation of
documentClass in MyApplicat i on returns the My Document class. Thus

in class Applicationwe have

clientMethod
document := self documentClass new.

documentClass
self subclassResponsibility

In class MyApplication we have

documentClass
~ MyDocument .

which returns the class MyDocument to be instantiated to Application.

An even more flexible approach akin to parameterized factory methods is to
store the’ class to be created as a class variable of Appl icat ion. That way
you don’t have to subclass Applicat ion to vary the product.

f:c;ory methods in C++ are always virtual functions and are often pure vir-
tha ;]ust be careful not to call factory methods in the Creator’s constructor—
e factory method in the ConcreteCreator won't be available yet.

;{(c))ru 0canra:/.oxd this by being careful to access products solely through acces:
or a];eea :825 zth?t create the product on demand. Instead of creating the
oy acceszo uct in the constructor, the constructor merely initializes it to 0.

r returns the product. But first it checks to make sure the product

::;15;3 laanzc; iifniittid?‘esn’t, the accessor creates it. This technique is sometimes
a i :
. ization. The following code shows a typical implementa-

FACTORY METHOD 113

class Creator {
public:

Product* GetProduct () ;
protected:

virtual Product* CreateProduct () ;
private:

Product* _product;
)3
Product* Creator::GetProduct () {
if (_product

== 0) (
-product = CreateProduct();

)

return _product;

4. Using templates to avoid subclassing. As we've mentioned, another potential
problem with factory methods is that they might force you to subclass just
to create the appropriate Product objects. Another way to get around this in

C++ is to provide a template subclass of Creator that’s parameterized by the
Product class:

} NODIHO

{ ot ¥ dnd

A

class Creator (
public:

S—

-
virtual Product* CreateProduct() = 0;

):

template <class TheProduct>

class StandardCreator: public Creator (
public:

virtual Product* CreateProduct();

et e B

¥

SRR PRt s e

template <class TheProduct>

Product* standardCreator<TheProduct>: :CreateProduct () {
return new TheProduct;

}

With this template, the client supplies just the product class—no subclassing
of Creator is required.

class MyProduct : public Product {
public:

MyProduct ()

//

):

StandardCreator<MyProduct> myCreator;

! i i tions that make
5. Naming conventions. It's good practice to use naming conven :
it deaf you're using factgory methods. For example, the MacApp Mfianttc;sa};
application framework [App89] always declares the abstract (})‘peraC 1onss ¥
defines the factory method as Class® DoMakeClass (), where Cla
the Product class.

_________---lll.'lll

CHAPTER 3

114 CREATIONAL PATTERNS

e
Sample COd e (page 84) builds and returns a maze. One problem

ion CreateMaze ‘ | a
T}?ehf;ll:d‘function is that it hard-codes the classes of maze, rooms, doows. ead
wit 1S

1ls. We'll introduce factory methods to let subclasses choose these components
walls. We ‘ _

First we’'ll define factory methods in MazeGame for creating the maze, room, wall,
and door objects:

MazeGame

Maze* Creat eMaze

factory methe

virtual Maze

{ retu

virtual Roon

{ return neé

virtual wald
return new wa

virtual
Each factory method returns a maze component of a given type. MazeGame pro-

vides default implementations that return the simplest kinds of maze, rooms,
walls, and doors.

Now we can rewrite CreateMaze to use these factory methods:

Maz » *am > A
Maze* MazeGame: :CreateMa:
Maze* aMaze
Mak
"
Mak
1€ Make
aMaze
aMaze
rl ¢ M
Mak \
r1 C
ril Se 1¢ a
rl->Se 1¢ Ma
1 " .
->SetSide (We Makewa
de (Nt tak
A
d i
le (Ea MakeWa
ie (™
a \
de (We

FACTORY METHOD 115

return aMaze;
)

Different games can subclass Ma zeGame to specialize parts of the maze. Ma zeGame
subclasses can redefine some or all of the factory methods to specify variations

in products. For example, a BombedMazeGame can redefi
4 efine the R
products to return the bombed varieties: ocwand Well

class BombedMazeGame
public:
BombedMazeGame () ;

: public MazeGame {

virtual wall* Makewall() const
{ return new Bombedwall;)

0039

virtual Room* MakeRoom(int n) const
{ return new RoomWithABomb(n);)

};:

WET Y
P S

An EnchantedMazeGame variant might be defined like this: b

class EnchantedMazeGame : public MazeGame (o
public:
EnchantedMazeGame () ;

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()): }

Cniw #

Siiisie

virtual Door* MakeDoor (Room* rl, Room* r2) const]
(return new DoorNeedingSpell(rl, ralr 3 {
protected:
Spell* CastSpell() const;
}i

Known Uses

Factory methods pervade toolkits and frameworks. The pnecedi{\g document ex-
ample is a typical use in MacApp and ET++ [WGMS8]. The manipulator example
is from Unidraw.

Class View in the Smalltalk-80 Model / View /Controller framework has a method
defaultController that creates a controller, and this might appear to be a factory
method [Par90]. But subclasses of View specify the class of their default controﬂfr
by defining defaultControllerClass, which returns the class from which def; 0;
Controller creates instances. SO defaultControllerClass is the real factory method,
that is, the method that subclasses should override.

A more esoteric example in Smalltalk-80is the fact.ory method %a.zerCl;?:s d:finlae:;
by Behavior (a superclass of all objects representing classes). ena

4_____-----lllll'l

—'——7

116

CREATIONAL PATTERNS CHAPTER 3

to use a customized parser for its source code. For example,‘ a client can define

a class SQLParser to analyze the source code of a class with embedded SQL

statements. The Behavior class implements parserClass to returmn the standard

Smalltalk Parser class. A class that includes embedded SQL statements overrides
d returns the SQLParser class.

this method (as a class method) an
m from IONA Technologies [ION94] uses Factory Method to
Proxy (207)) when an object requests a

The Orbix ORB syste
generate an appropriate type of proxy (see

thod makes it easy to replace the default
for example.

reference to a remote object. Factory Me
proxy with one that uses client-side caching,

Related Patterns

Abstract Factory (87) is often implemented with factory methods. The Motivation
example in the Abstract Factory pattern illustrates Factory Method as well.
Factory methods are usually called within Template Methods (325). In the docu-
ment example above, NewDocument is a template method.

Prototypes (117) dqn’t require subclassing Creator. However, they often require
an'Imhahze operation on the Product class. Creator uses Initialize to initialize the
object. Factory Method doesn’t require such an operation.

PROTOTYPE 117

PROTOTYPE

Object Creational

Intent

Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.

Motivation

You could build an editor for music scores by customizing a general framework
for graphical editors and adding new objects that represent notes, rests, and
staves. The editor framework may have a palette of tools for adding these music
objects to the score. The palette would also include tools for selecting, moving,
and otherwise manipulating music objects. Users will click on the quarter-note
tool and use it to add quarter notes to the score. Or they can use the move tool to
move a note up or down on the staff, thereby changing its pitch.

Let's assume the framework provides an abstract Graphic class for graphical com-
ponents, like notes and staves. Moreover, it'll provide an abstract Tool class for
defining tools like those in the palette. The framework also predefines a Graphic-
Tool subclass for tools that create instances of graphical objects and add them to
the document.

But GraphicTool presents a problem to the framework designer. The classes for
notes and staves are specific to our application, but the GraphicTool class belongs
to the framework. GraphicTool doesn’t know how to create instances of our music
classes to add to the score. We could subclass GraphicTool for each kind of music
object, but that would produce lots of subclasses that differ only in the kind of
music object they instantiate. We know object compositionis a f_lex1ble altematl've
to subclassing. The question is, how can the framework use it to parameterize
instances of GraphicTool by the class of Graphic they’re supposed to create?

The solution lies in making GraphicTool create a new Gx-'aphic by copying or
“cloning” an instance of a Graphic subclass. We call this instance a prototype.
GraphicTool is parameterized by the prototype it should Flone and add to the
document. If all Graphic subclasses support a Clone operation, then the Graphic-
Tool can clone any kind of Graphic.

i i ject i instance of
So in our music editor, each tool for creating a music object is an Ins e
GraphicTool that’s initialized with a different prototype. Each Gra‘pmtc:oo}ol:e
stance will produce a music object by cloning its prototype and adding the
to the score.

CHAPTER 3

Draw(Positon)
Clone()

WholeNote Haifhote
p = prototype~>Clone(} Draw(Poston) Oraw(Postion)
w@:)(%?nr:wosm)(Cione() 9 Clone() 9
fmsnpmomwm : :
return copy of sell I Mmdu‘ﬁ

We can use the Prototype pattern to reduce the number of classes even further
We have separate classes for whole notes and half notes, but that’s probably
unnecessary. Instead they could be instances of the same class initialized with
different bitmaps and durations. A tool for creating whole notes becomes just a
GraphicTool whose prototype is a MusicalNote initialized to be a whole note. This
can reduce the number of classes in the system dramatically. It also makes it easier
to add a new kind of note to the music editor.

Applicability

Use the Prototype pattern when a system should be independent of how its
products are created, composed, and represented; and

e when the classes to instantiate are specified at run-time, for example, by
dynamic loading; or

e to avoid building a class hierarchy of factori v
chy of products; or y of factories that parallels the class hierar-

- (v)vfhetn instances of a class can have one of only a few different combinations
state. It may be more convenient to install a corresponding number of

prototypes and clone them rather than i iati
2 é n instantiating the Ily, each
time with the appropriate state. . prrei g s

Structure

Operation() @

°°'°‘°"’*’°“"°ﬂ [l

ConcretePrototype1 ConcretePrototype2
Clone() Q@ Clone() @
return copy of self mtumcopyofseﬁﬂ

Participants

¢ Prototype (Graphic)
- declares an interface for cloning itself.

o ConcretePrototype (Staff, WholeNote, HalfNote)
- implements an operation for cloning itself.

¢ Client (GraphicTool)

- creates a new object by asking a prototype to clone itself.

Collaborations
o A client asks a prototype to clone itself.

Consequences

Prototype has many of the same consequences that Abstract Fad9w (87) and
Builder (97) have: It hides the concrete product classes from the client, thereby
reducing the number of names clients know about. Moreover, t.hese patterns let a
client work with application-specific classes without modification.

Additional benefits of the Prototype pattern are listed below.

1. Adding and removing products at run-time. Prototypes let you mcorpotratte a
new concrete product class into a system simply b.y registering a pro tc? }r?;
ical instance with the client. That’s a bit more fiexible than other creatio
patterns, because a client can install and remove prototypes at run-time.

i i i i tems let you de-
2. Specifying new objects by varying values. ngf_\ly dynamic sys
ﬁr:: I’\ngbehavi(;r th:)yugh object composition—by specifying values for an

PROTOTYPE 119

V18 NODIHO

WA §

—7

CHAPTER 3
120 CREATIONAL PATTERNS

not by defining new classes. You ef-

. ﬁblei,e&)rk‘iﬁ?jr:ﬁlfe(;?enc‘tjs by instantiating existi.ng classes and

fed.lvely.' dethr:eeinstances as prototypes of client objects. A client can exhibit
trfegvftbeerlllr;%ior by delegating responsibility to the pr:)tofype, A

This kind of design lets users define new “classes w1thogt ‘;;,og?::mmg'

; rototype is similar to instantiating a class. The Prototype

A donmmgailpreduce the number of classes a system needs. In our music

E:::g?:r?g (%raph}i,c'l'ool class can create a limitless variety of music objects.

3. Specifying new objects by varying structure. .Many. applications l:;ullm
from parts and subparts. Editors for ‘cm*unt design, fqr e.xan?p e, dr-
cuits out of subcircuits.! For convenience, such applications pften k(you
instantiate complex, user-defined structures, say, to use a specific subcircuit
again and again. : ' o

The Prototype pattern supports this as well. We simply add this subcircuit as
a prototype to the palette of available circuit elements. .As !ong as th.e com-
posite circuit object implements Clone as a deep copy, circuits with different

structures can be prototypes.

4. Reduced subclassing. Factory Method (107) often produces a hierarchy of Cre-
ator classes that parallels the product class hierarchy. The Prototype pattemn
lets you clone a prototype instead of asking a factory method to make a new
object. Hence you don’t need a Creator class hierarchy at all. This benefit
applies primarily to languages like C++ that don’t treat classes as first-class
objects. Languages that do, like Smalltalk and Objective C, derive less bene-
fit, since you can always use a class object as a creator. Class objects already
act like prototypes in these languages.

object’s varia

5. Configuring an application with classes dynamically. Some run-time environ-
ments let you load classes into an application dynamically. The Prototype
pattern is the key to exploiting such facilities in a language like C++.

An application that wants to create instances of a dynamically loaded class
won’tbe able to reference its constructor statically. Instead, the run-time envi-
ronment creates an instance of each class automatically when it’s loaded, and
it regxsters the instance with a prototype manager (see the Implementation
section). Then the application can ask the prototype manager for instances of
newly loaded classes, classes that weren't linked with the program originally.

The ET++ application framework [WGMSS] has a run-time system that uses
this scheme.

e main liability of the Prototype pattern is that each subclass of Prototype must

implement the Clone operation i
ent , which may be difficult ddin
Cloneis difficult when the classes under con;;idc ey b :

ing clone can be difficult when their deration alfeady exist. Implement-
copying or have circular refe-rennce:r T T e S S

Such applicati i
PP ons reflect the Composite (163) and Decorator (175) patterns.

PROTOTYPE 121
mplementation

Prototype is partic‘ularly useful with static languages like C++, where clas

not ob)ects., and little or no type information is available atlrun-time Its’eslam
important in languages like Smalltalk or Objective C that provide what a o
toa p!'ototype (i.e., a class object) for creating instances of each class. This :t‘t(e)eunFs
built into prototype-based languages like Self [US87], in which all.ob'écf cre :n -
happens by cloning a prototype. : —

Consider the following issues when implementing prototypes:

1. Using a prototype manager. When the number of protot ina isn’
fixed (thatis, they can be created and destroyed dl;nami}lc};Tlsy), ke:;);sat?en;::tnr;
of available prototypes. Clients won’t manage prototypes themselves but will
store and retrieve them from the registry. A client will ask the registry for a
prototype before cloning it. We call this registry a prototype manager.

A prototype manager is an associative store that returns the prototype match-
ing a given key. It has operations for registering a prototype under a key and
for unregistering it. Clients can change or even browse through the registry
at run-time. This lets clients extend and take inventory on the system without
writing code.

2. Implementing the Clone operation. The hardest part of the Prototype pattern
is implementing the Clone operation correctly. It’s particularly tricky when
object structures contain circular references.

Most languages provide some support for cloning objects. For example,
Smalltalk provides an implementation of copy that’s inherited by all sub-
classes of Object. C++ provides a copy constructor. But these facilities don’t
solve the “shallow copy versus deep copy” problem [GR83]. That is, does
cloning an object in turn clone its instance variables, or do the clone and
original just share the variables?

A shallow copy is simple and often sufficient, and that’s what Smalltalk
provides by default. The default copy constructor in C++ does a member-
wise copy, which means pointers will be shared between the copy anfi the
original. But cloning prototypes with complex structures usually requires a
deep copy, because the clone and the original must be independent. Therefo::e
you must ensure that the clone’s components are clongs of the prototype’s
components. Cloning forces you to decide what if anything will be shared.
If objects in the system provide Save and Load operations, then you can uls;e
them to provide a default implementation of Clone supply by sa;\rmgb.t e§
object and loading it back immediately. The Save operation saves the 0)t E
into a memory buffer, and Load creates a duplicate by reconstructing
object from the buffer.

3. Initializing clones. While some clients are perfectly happy V‘l’itt‘ :hetc(.:l?z:leu:
is, others will want to initialize some oOr all of its internal state

CHAPTER 3

122 CREATIONAL PATTERNS

You generally can’'t p

of their choosing.)
ation, because their number wil

prototypes might need multiple
any. Passing pa
interface.

It might be the case that your prototype classes

(re)setting key pieces of state. .
ately after cloning. If not, then you may have to introduce an Ini

operation (see the Sample

ters as argum
deep-copying Clone operations—the
explicitly or within Initialize) before you reinitialize them.

Sample Code

ass these values in the Clone oper-
| vary between classes of prototypes. Some
initialization parameters, others won't need
rameters in the Clone operation precludes a uniform cloning

already define operations for
If so, clients may use these operations immedi-

Code section) that takes initialization parame-
ents and sets the clone’s internal state accordingly. Beware of
copies may have to be deleted (either

We'll define a MazePrototypeFactory subclass of the MazeFactory class
(page 92). MazeProt otypeFactory will be initialized with prototypes of the
objects it will create so that we don’t have to subclass it just to change the classes

of walls or rooms it creates.

MazePrototypeFactory augments the MazeFactory interface with a con-

structor that takes the prototypes as arguments:

\4‘1 sS M raP -t ruvmel .t 1
as MazePrototypeFa ory : publil MazeFactory
public:

MazePrototypeFactory (Maze*, Wall* Room* Door*

private:

in

Maze* _prototypeMaze;

P.Y'oom' prototypeRoom;
Wall* _prototypeWall;
’ 11;
Door* _prototypeDoor:;

)i

The new co i ini
nstructor simply initializes its prototypes:

MazePrototypeFactory:
tory:

Maz * wWa 1
: Maze™ m, wWall* w, Room*
) |] - r, I r* 4

tMazePr

-PrototypeMaze
—Prototypewall
—PrototypeRoom X
~Prototypeboor l

PROTOTYPE 123
The member functions for creating walls, rooms,

and doors are similar: E
clones a prototype and then initializes it. Here are th iti waE Bk
. e
and MakeDoor: definitions of Makewal1l

Wall* MazePrototypeFactory: :Makewall

() const {
return _prototypeWall->Clone();
}
Door* MazePrototypeFactory::MakeDoor (Room* rl, Room *r2) const {
Door* door = _prototypeDoor->Clone();

door->Initialize(rl, r2);
return door;

We can use MazePrototypeFactory to create a prototypical or default maze
just by initializing it with prototypes of basic maze components:

MazeGame game;
MazePrototypeFactory simpleMazeFactory (
new Maze, new Wall, new Room,

new Door
):

Maze* maze = game.CreateMaze(simpleMazeFactory);

To change the type of maze, we initialize MazePrototypeFactory with a dif-

ferent set of prototypes. The following call creates a maze with a BombedDoor
and a RoomWi t hABomb:

MazePrototypeFactory bombedMazeFactory (
new Maze, new Bombedwall,

new RoomWithABomb, new Door
)i

An object that can be used as a prototype, such as an instance of Wall, must
support the C1one operation. It must also have a copy constructor for ’clomng. It
may also need a separate operation for reinitializing internal stalte. We'll add the
Initialize operation to Door to let clients initialize the clone’s rooms.

Compare the following definition of Door to the one on page 83:

class Door : public MapSite (
public:

Door () ;

Door (const Doork) ;

virtual void Initialize(Room*, Room*) ;
virtual Door* Clone() const;

-

”

—'—'"

124 CREATIONAL PATTERNS CHAPTER 3

virtual void Enter ()
3 4 - .
Room* OtheerdeFrom(Room) 3
private:
Room* _rooml;
Room* _room2;

)i

Door: : Door (const Doork other) {
yooml = other._rooml;

room2 = other._roomZ;

void poor::Initialize (Room* rl, Room* r2)

_rooml = rl;
_room2 = r2;
}
Door* Door::Clone () const {

return new Door (*this) ;
}

b

The BombedwWal 1 subclass must override Clone and implement a corresponding
copy constructor.

class Bombedwall : public wall {
public:

Bombedwall () ;

BombedWall (const Bombedwallk) ;

virtual wall* Clone() const
bool HasBomb();

private:
bool _bomb;

}:

BombedWall: : BombedWall (const

Bombedwall& other) : Wall(other) |
_bomb = other._bomb;

}

Wall* BombedwWall::Clone () const ({
return new Bombedwall (*this);

}

A

p(l):}x:?(‘:rgtg Bombe.dWa 11::Clone returns a wall®, its implementation retums a

ek inat }t]\e\l/)v Instance of a subclass, that is, a Bombedwal1*. We define Clone
e base class to ensure that clients that clone the prototype don’t have

to kn .
the (;w about their concrete subclasses. Clients should never need to downcast
return value of Clone to the desired type

In Smalltalk, you ca
to clone any 4 n reuse the standard copy method inherited from Object

MapSi
pSite. You can use MazeFactory to produce the prototypes

PROTOTYPE 125

you'll need; for example,
The MazeFactory has a
method looks like this:

);o:t can create a room by supplying the name #roon,
ictionary that maps names to prototypes. Its make:

make: partName
® (partCatalog at: partName) copy

Given appropriate methods for initializing the Mazeractor

i with
you could create a simple maze with the following code: ¥ with prototypes,

CreateMaze
on: (MazeFactory new

with: Door new named:

#door;

with: wWall new named: #wall;
with: Room new named: #room;
yourself) §§
B
where the definition of the on : class method for CreateMaze would be P,
on: aFactory
| rooml room2 |
rooml := (aFactory make: #room) location: 1@1.
room2 := (aFactory make: #room) location: 2@1.
door := (aFactory make: #door) from: rooml to: room2.
rooml g
atSide: #north put: (aFactory make: #wall);
atSide: #east put: door;
atSide: #south put: (aFactory make: #wall);
atSide: #west put: (aFactory make: #wall).
room2
atSide: #north put: (aFactory make: #wall};)
atSide: #east put: (aFactory make: #wall};
atSide: #south put: (aFactory make: #wall};
atSide: #west put: door.
* Maze new 2

addRoom: rooml;
addRoom: room2;
yourself

{nown Uses

Perhaps the first example of the Prototype pattern was inIvan Sutherlapd’s Ske.tch-
pad system [Sut63]. The first widely known application of the patterninan object-
oriented language was in ThingLab, where users could form a composite ob]eg
and then promote it to a prototype by installing it in a library of neusab?};a 8 :
jects [Bor81]. Goldberg and Robson mention prototypes as a pattern !GRS'd" I:S
Coplien [Cop92] gives a much more complete description. He descx('ilbes i tligns
related to the Prototype pattern for C++ and gives many examples and varia ;

i int-and-click
Etgdb is a debugger front-end based on ET++ that provides a poin i
interface to different line-oriented debuggers. Each debugger has a c?t?jis?;)rt\ge
ing DebuggerAdaptor subclass. For example, GdbAdaptor adapts etg

—

126

CREATIONAL PATTERNS CHAPTER 3

U gdb, while SunDbxAdaptor adapts etgdb to Sun’s dbx
Sztt??g;g lsiz’;(;?)xd‘:fe(:?ot }%ave a set of DebuggerAdaptor classes hf‘lrd-coded im,o
it. Instead, it reads the name of the adaptor to use from an environment vari-
able, looks for a prototype with the speafled name in a globa} ta'ble,. anq then
clones the prototype. New debuggers can be added to etgdb by linking it with the
DebuggerAdaptor that works for that debugger.
The “interaction technique library” in Mode Composer stores prototypes of Ob?ects
that support various interaction techniques [Sha90]. Any mteracthn (tfd}mqu_e
created by the Mode Composer can be used as a prototype by plaqng it in this
library. The Prototype pattern lets Mode Composer support an unlimited set of
interaction techniques.
The music editor example discussed earlier is based on the Unidraw drawing

framework [VL90].

Related Patterns

Prototype and Abstract Factory (87) are competing patterns in some ways, as we
discuss at the end of this chapter. They can also be used together, however. An
Abstract Factory might store a set of prototypes from which to clone and retum
products objects.

Designs that make heavy use of the Composite (163) and Decorator (175) patterns
often can benefit from Prototype as well.

SINGLETON 127

—

SINGLETON

—

Object Creational

[ntent

Ensure a class only has one instance, and provide a global point of access to it.

Motivation

I'simportant for some classes to have exactly one instance. Although there can be
many printers in a system, there should be only one printer spooler. There should
be only one file system and one window manager. A digital filter will have one
A/D converter. An accounting system will be dedicated to serving one company.

How do we ensure that a class has only one instance and that the instance is easily
accessible? A global variable makes an object accessible, but it doesn’t keep you
from instantiating multiple objects.

A better solution is to make the class itself responsible for keeping track of its sole
instance. The class can ensure that no other instance can be created (by intercepting
requests to create new obijects), and it can provide a way to access the instance.
This is the Singleton pattern.

Applicability
Use the Singleton pattern when

o there must be exactly one instance of a class, and it must be accessible to
clients from a well-known access point.

o when the sole instance should be extensible by subclassing, ar.ld clients
should be able to use an extended instance without modifying their code.

Structure

static Instance() O --1-~-~"""""" return unigueinstance l

- ...

JOUSEY)

—-———"

128

CREATIONAL PATTERNS

CHAPTER 3

Participants

e Singleton

_ defines an Instance operation that

—~ may be responsible for cre

lets clients access its unique instance.

[nstance is a class operation (that is, a class method in Smalltalk and a static

member function in C++).
ating its own unique instance.

Collaborations
e Clients access a Singleton instance solely through Singleton’s Instance opera-

tion.

Consequences
The Singleton pattern has several benefits:

; o

Controlled access to sole instance. Because the Singleton class encapsulates its
sole instance, it can have strict control over how and when clients access it.

. Reduced name space. The Singleton pattern is an improvement over global

variables. It avoids polluting the name space with global variables that store
sole instances.

. Permits refinement of operations and representation. The Singleton class may be

subclassed, and it’s easy to configure an application with an instance of this
extended class. You can configure the application with an instance of the
class you need at run-time.

. Permits a variable number of instances. The pattern makes it easy to change your

mind and allow more than one instance of the Singleton class. Moreover,
you can use the same approach to control the number of instances that

Fhe application uses. Only the operation that grants access to the Singleton
instance needs to change.

. More flexible than class operations. Another way to package a singleton’s func-

tionality is to use class operations (that is, static member functions in C++ or
class methods in Smalltalk). But both of these language techniques make it
hard to change a design to allow more than one instance of a class. Moreover,

static member functions in C++ are never virtual, so subclasses can’t override
them polymorphically.

Implementation

Here are implementation issues to consider when using the Singleton patter:

1.

Ensuring a unique instance. The Sin

- leton i a
normal instance of a class, 8 pattern makes the sole instance

but that class is written so that only one instance

SINGLETON 129

can ever be created. A common way to do this is to hi i

mg§ the instance behind a class operation (that is,ht:gf\e:r : :tiet;g oee tl};at
functhn or a class method) that guarantees only one instance is creatr;;m"}'lsr
operation has access to the variable that holds the unique instance . d it
ensures the variable is initialized with the unique instance before re{‘L?r!;inlgt

its value. This approach ensures that a singleton is Gk
creat fon
before its first use. & ated and initialized

You can define the class operation in C++ with a static member function
Instanceofthe Singletonclass. Singletonalso defines a static member
variable .instance that contains a pointer to its unique instance.

The Singleton class is declared as

class Singleton (
public:

static Singleton* Instance();
protected:

Singleton();
private:

static Singleton* _instance;
}:

The corresponding implementation is

Singleton* Singleton::_instance = 0;
Singleton* Singleton::Instance () {
if (_instance == 0) (
_instance = new Singleton;

}
return _instance;
)

Clients access the singleton exclusively through the Instance member func-
tion. The variable _instance is initialized to 0, and the static member func-
tion Instance returns its value, initializing it with the unique instance if it
is 0. Instance uses lazy initialization; the value it returns isn’t created and
stored until it’s first accessed.

Notice that the constructor is protected. A client that tries to instantiate
singleton directly will get an error at compile-time. This ensures that only
one instance can ever get created.

Moreover, since the .instance is a pointer to a Singleton object, the
Instance member function can assign a pointer to a subclass of Single-
ton to this variable. We'll give an example of this in the Sample Code.
There’s another thing to note about the C++ implementation. It isn't enou%}\
to define the singleton as a global or static object and then rely on automatic
initialization. There are three reasons for this:

(a) We can’t guarantee that only one instance of a static obj
declared.

ect will ever be

e e

CHAPTER 3
130 CREATIONAL PATTERNS

(b) We might not have enough information to imtan@te every singleton
at static initialization time. A singleton might require values that are
computed later in the program’s execution.

order in which constructors for global objects are
n units [ES90]. This means that no dependencies
if any do, then errors are inevitable.

(c) C++ doesn’t define the
called across translatio
can exist between singletons;

An added (albeit small) liability of the global/static object approach ns that
it forces all singletons to be created whether they are used or not. Using a
static member function avoids all of these problems.

In Smalltalk, the function that returns the unique instance is implemented
as a class method on the Singleton class. To ensure that only one instance is
created, override the new operation. The resulting Singleton class might have
the following two class methods, where Solelnstance is a class variable
that is not used anywhere else:

new

gself error: ’‘cannot create new object’
default
SoleInstance isNil ifTrue: [Solelnstance := super new)

SolelInstance

2. Subclassing the Singleton class. The main issue is not so much defining the
subclass but installing its unique instance so that clients will be able to use
it. In essence, the variable that refers to the singleton instance must get
initialized with an instance of the subclass. The simplest technique is to
determine which singleton you want to use in the Singleton’s Instance
operation. An example in the Sample Code shows how to implement this
technique with environment variables.

Another way to choose the subclass of Singleton is to take the implementation
of Instance out of the parent class (e.g., MazeFactory) and put it in the
subclass. That lets a C++ programmer decide the class of singleton at link-
time (e.g., by linking in an object file containing a different implementation)
but keeps it hidden from the clients of the singleton.

The link approach fixes the choice of singleton class at link-time, which
makes it hard to choose the singleton class at run-time. Using conditional
statements to determine the subclass is more flexible, but it hard-wires the

i:tseo; possible Singleton classes. Neither approach is flexible enough in all

A more flexible approach uses a regi i .
gistry of singletons. Instead of having
Instance deﬁpe the set of possible Singleton classes, the Singleton classes
-(;n register their singleton instance by name in a well-known registry.
S e:d X;eglzit;yln:aps between string names and singletons. When Instance
gleton, it consults the registry, asking for the singleton by name.

SINGLETON 131

The registry looks up the corresponding singl if it exi
: gleton (if it exists) and ret it
This approach frees Instance from knowing all possible Singletonlé;:sssles.

or instances. All it requires is a common interf, i
. . ace for all Sin
that includes operations for the registry: gleton classes

class Singleton ({
public:
static void Register (char* name,
static Singleton* Instance();
protected:

Singleton*) ;

static Singleton* Lookup(const char* name);
private:

static Singleton* _instance;

static List<NameSingletonPair>* _registry;
}:

Register registers the Singleton instance under the given name. To keep
the registry simple, we’ll have it store a list of NameSingletonPair objects.
Each NameSingletonPair maps a name to a singleton. The Lookup op-
eration finds a singleton given its name. We’ll assume that an environment
variable specifies the name of the singleton desired.

singleton* Singleton::Instance () {
if (_instance == 0) (
const char* singletonName = getenv("SINGLETON");
// user or environment supplies this at startup

_instance = Lookup(singletonName) ;
// Lookup returns 0 if there’s no such singleton

)

return _instance;

)

Where do Singleton classes register themselves? One possibility is in t.heir
constructor. For example, aMySingleton subclass could do the following;:

Hysingleton::Mysinqleton() {

//

Sinqleton::Register('MySinqleton‘, this);
)

Of course, the constructor won't get called unless someone ins.tantiates the'
dass, which echoes the problem the Singleton pattern is trying to solve%
We can get around this problem in C++ by defining a static instance 0
MySingleton. For example, we can define

static MySingleton theSingleton;

in the file that contains MySingleton’s implementation.

Nolonger is the Singleton class responsible for creating the singleton. Instead,

its primary responsibility is to make the singleton object of choice accessible

P ———

CHAPTER 3
132 CREATIONAL PATTERNS
i j h still has a potential drawback—
i tem. The static object approac
raxt:;; {'lrs\a?innstances of all possible Singleton subclasses must be created, or

else they won’t get registered.

Sample Code o i

e define a MazeFactory class for uilding mazes as described on

izgggge MZZ eFactory defines an interface for building different parts of a maze.

Subclasses can redefine the operations to returq instances pf speaahzed product
classes, like Bombedwall objects instead of plain wall objects.

i icati nly one instance of
What's relevant here is that the Maze appllcathn needs only .
a maze factory, and that instance should be available to code that builds any
part of the maze. This is where the Singleton pattern comes in. By.maku‘\g the
MazeFactory a singleton, we make the maze object globally accessible without

resorting to global variables.

For simplicity, let's assume we'll never subclass MazeFactory. (We'll consider
the alternative in a moment.) We make it a Singleton class in C++ by adding a static
Instance operation and a static .instance member to hold the one and only
instance. We must also protect the constructor to prevent accidental instantiation,
which might lead to more than one instance.

class MazeFactory {
public:
static MazeFactory* Instance():;

// existing interface goes here
protected:

MazeFactory():
private:

static MazeFactory* _instance;

};

The corresponding implementation is

MazeFactory* MazeFactory::_instance = 0;
MazeFactory* MazeFactory::Instance ()
if (_instance == 0) ({
—instance = new MazeFactory;

}

return _instance;
}

Now let’s consider what happens when there are subclasses of MazeFact ory, and

the ap}?hcatlon mus? decide which one to use. We'll select the kind of maze through

::: ;SZSH:;\:\S;lt va:';lable af\d add code t_hat instantiates the proper MazeFactory

e on the environment variable’s value. The Instance operation is
8 place to put this code, because it already instantiates MazeFactory:

SINGLETON 133

MazeFactory* MazeFactory::Instance ()
if (_instance 0) {
const char* mazeStyle =

{
getenv ("MAZESTYLE") ;

if (strcmp(mazeStyle, "bombed®) == 0) {

~instance new BombedMazeFactory;

) else if (strcmp(mazeStyle,

*enchanted®) == 0) {
~instance = new EnchantedMazeFactory;
// ... other possible subclasses
} else ({ // default
~instance = new MazeFactory;

)
)
return _instance;

}

Note that Instance must be modified whenever you define a new subclass of
MazeFactory. That might not be a problem in this application, but it might be
for abstract factories defined in a framework.

A possible solution would be to use the registry approach described in the Imple-
mentation section. Dynamic linking could be useful here as well—it would keep
the application from having to load all the subclasses that are not used.

(nown Uses

An example of the Singleton pattern in Smalltalk-80 [Par90] is the set of changes to
the code, which is ChangeSet current. A more subtle example is the relation-
ship between classes and their metaclasses. A metaclass is the class of a class, and
each metaclass has one instance. Metaclasses do not have names (except indirectly
through their sole instance), but they keep track of their sole instance and will not
normally create another.

The InterViews user interface toolkit [LCI* 92] uses the Singleton pattern to access
the unique instance of its Session and WidgetKit classes, among o’thers. Session
defines the application’s main event dispatch loop, stores the user’s database of
stylistic preferences, and manages connections to one or more physical qlsplays.
WidgetKit is an Abstract Factory (87) for defining the look and fgel of user mtgrfalce
widgets. The widgetKit:: instance () operation det-ermmes the Partlcu ar
WidgetKit subclass that’s instantiated based on an environment variable that
Session defines. A similar operation on Session determines whether rr-\on(?ch:omc:
or color displays are supported and configures the singleton Session instan
accordingly.

e
¥

CREATIONAL PATTERNS CHAPTER 3

134

Related Patterns

erns can be
), Builder (97), and

the Singleton pattern. See Abstract

Many patt implcnwntcd using
Prototype (1 17).

Factory (87

DISCUSSION OF CREATIONAL PATTERNS 135

Discussion of Creational Patterns

There are two common ways to parameterize a system by the classes of objects it
creates. One way is to subclass the class that creates the objects; this corresponds to
using the Factory Method (107) pattern. The main drawback of this approach is that it
can require creating a new subclass just to change the class of the product. Such changes
can cascade. For example, when the product creator is itself created by a factory method,
then you have to override its creator as well.

The other way to parameterize a system relies more on object composition: Define an
object that’s responsible for knowing the class of the product objects, and make it a
parameter of the system. This is a key aspect of the Abstract Factory (87), Builder (97),
and Prototype (117) patterns. All three involve creating a new “factory object” whose
responsibility is to create product objects. Abstract Factory has the factory object pro-
ducing objects of several classes. Builder has the factory object building a complex
product incrementally using a correspondingly complex protocol. Prototype has the
factory object building a product by copying a prototype object. In this case, the factory
object and the prototype are the same object, because the prototype is responsible for
returning the product.

Consider the drawing editor framework described in the Prototype pattern. There are
several ways to parameterize a GraphicTool by the class of product:

e By applying the Factory Method pattern, a subclass of GraphicTool will be created
for each subclass of Graphic in the palette. GraphicTool will have a NewGraphic
operation that each GraphicTool subclass will redefine.

* By applying the Abstract Factory pattern, there will be a class hierarchy of Graph-
icsFactories, one for each Graphic subclass. Each factory creates just one product
in this case: CircleFactory will create Circles, LineFactory will create Lines, and
soon. A GraphicTool will be parameterized with a factory for creating the appro-
priate kind of Graphics.

* By applying the Prototype pattern, each subclass of Graphics will implement the
Clone operation, and a GraphicTool will be parameterized with a prototype of
the Graphic it creates.

Which pattern is best depends on many factors. In our drawing editor framework, the
Factory Method pattern is easiest to use at first. It’s easy to define a new subclass of
GraphicTool, and the instances of GraphicTool are created only when the palette is
defined. The main disadvantage here is that GraphicTool subclasses proliferate, and
none of them does very much.

Abstract Factory doesn’t offer much of an improvement, because it requires an equally
large GraphicsFactory class hierarchy. Abstract Factory would be preferable to Factory
Method only if there were already a GraphicsFactory class hierarchy—either because
the compiler provides it automatically (as in Smalltalk or Objective C) or because it's
needed in another part of the system.

——'——7

136 CREATIONAL PATTERNS CHAPTER 3

Overall, the Prototype pattern is probably the best for. the drawing‘editqr framework,
because it only requires implementing a Clone operation on each Graphics class. That
reduces the number of classes, and Clone can be used for purposes other than pure
instantiation (e.g., @ Duplicate menu operation).

Factory Method makes a design more customizable fmd only a little more complicated.
Other design patterns require new classes, whereas Factory Method only requires a new
operation. People often use Factory Method as the standard way to create objects, but it
isn’t necessary when the class that’s instantiated never changes or when instantiation
takes place in an operation that subclasses can easily override, such as an initialization
operation.

Designs that use Abstract Factory, Prototype, or Builder are even more flexible than
those that use Factory Method, but they’re also more complex. Often, designs start out
using Factory Method and evolve toward the other creational patterns as the designer
discovers where more flexibility is needed. Knowing many design patterns gives you
more choices when trading off one design criterion against another.

