
NOTICE:

This scan is being provided as part of Oregon State University's effort to prevent
the spread of the COVID 19 virus. It is for your personal or instructional use only,
and is only intended for use during the time when University public health
measures prevent access to your personal copy or a copy on physical reserve at
the Library. Please discard this copy once you have access to your personal copy
or to the physical copy at the Library, and do not share it.

When available, we have included the copyright statement provided in the work
from which this copy was made.

If the work from which this copy was made did not include a formal copyright
notice, this work may still be protected by copyright law. Uses may be allowed
with permission from the rights-holder, or if the copyright on the work has
expired, or if the use is "fair use" or within another exemption. The user of this
work is responsible for determining lawful use.

Design Patterns
Elements of Reusable Object-Oriented Software

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

A
• •

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

„ IRuiidinvlConstruction b, Christopher — ' Alexander, copyright ©19
Oxford University Press, Inc.

or all caps.

*•
" «•« =-™

Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Design Patterns: elements of reusable object-oriented soltw.m

Erich Gamma... [et al.].
p. cm. -- (Addison-Wesley professional computing series)

Includes bibliographical references and index.
ISBN 0-201-63361-2 _ _ _
1. Object-oriented programming (Computer science) 2 Computet

software-Reusability. I. Gamma, Erich. II. Series.
QA76.64.D47 1994
005.1'2~dc20 94-34264

Copyright © 1995 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced. stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy
ing, recording, or otherwise, without the prior consent of the ptfblUw Mftd »n the
United States of America. Published simultaneously in Canada

Cover art © 1994 M.C. Escher / Cordon Art - Baarn - Holland. All tight, reserved.

~WaS^ aUlh°rS10-|x,in, PiUMin<> us,nH LATEX. 1-rantcMakc.

ISBN 0-201-63361-2

3T5Pn?9°n,̂ !!Ĉ ,and acid-fTO POPer-
iu- 7, • . 10 11 CRW 98979695
third printing, May 1995

Chapter 3

Creational Patterns

Creational design patterns abstract the instantiation process. They help make a system
independent of how its objects are created, composed, and represented. A class cre­
ational pattern uses inheritance to vary the class that's instantiated, whereas an object
creational pattern will delegate instantiation to another object.

Creational patterns become important as systems evolve to depend more on object
composition than class inheritance. As that happens, emphasis shifts away from hard-
coding a fixed set of behaviors toward defining a smaller set of fundamental behaviors
that can be composed into any number of more complex ones. Thus creating objects
with particular behaviors requires more than simply instantiating a class.
There am two recurring themes in these patterns. First, they all encapsulate knowledge
about which concrete classes the system uses. Second, they hide how instances of these
classes are created and put together. All the system at large knows about the objects is
their interfaces as defined by abstract classes. Consequently, the creational patterns give
you a lot of flexibility in what gets created, who creates it, how it gets created, and when.
They let you configure a system with "product objects that vary widely in structure
and functionality. Configuration can be static (that is, specified at compile-time) or
dynamic (at run-time).
Sometimes creational patterns are competitors. For example, there are cases when either
Prototype (117) or Abstract Factory (87) could be used profitably. At other times they
are complementary: Builder (97) can use one of the other patterns to implement which
components get built. Prototype (117) can use Singleton (127) in its implementation.

Because the cmational patterns are closely related, we'll study all five of then^Jher
to highlight their similarities and differences. Well also use a common examp
bulling a maze for a computer game-to illustrate their
and the gami' will vary slightly from

81

82 CREATIONAL PATTERNS °™3

overcome, and these games may provide a map of the part of the maze that has been

explored. can be ta a maze and whether a maze game has a
We-U Ignore many de d weli just focus on how mazes get created. We define
I m^asTsefof moms. A room 'knows its neighbors; possible neighbors are another
room, a wall, or a door to another room.
The classes Room, Door, and Wal 1 define the components of the maze used in all our
examples We define only the parts of these classes that are important for creating a
maze We'll ignore players, operations for displaying and wandering around in a maze,
Tnd other important functionality that isn't relevant to building the maze.

The following diagram shows the relationships between these classes:

Each room has four sides. We use an enumeration Di rec t ion in C++ implementations
to specify the north, south, east, and west sides of a room:

enum Direction {North, South, East, West);

The Smalltalk implementations use corresponding symbols to represent these direc-

The class MapSite is the common abstract class for all the components of a maze.
^ * f example' MapSite defines only one operation, Enter. Its meaning

vnluru f °n r at >'ou re entering. If you enter a room, then your location changes. If
the next room^TfH^' ^ °ne °f tWO thin§s haPPen: K the door is open, you go into
the next room. If the door 1S closed, then you hurt your nose.

class MapSite {
public:

virtual void Enter() = 0 ;

CREATIONAL PATTERNS 83

.—"j .wuia m me maze.
class Room : public MapSite {
public:

Room(int roomNo);

MapSite* GetSide(Direction) const;
void SetSide(Direction, MapSite*);

virtual void Enter();

private:
MapSite* _sides[4];
int _roomNumber;

} ;

The following classes represent the wall or door that occurs on each side of a room.

class Wall : public MapSite {
public:

Wall() ;

virtual void Enter();
} ;

class Door : public MapSite {
public:

Door(Room* = 0, Room* = 0);

virtual void Enter();
Room* OtherSideFrom(Room*);

private:
Room* _rooml;
Room* _room2;
bool _isOpen;

) ;

We need to know about more than just the parts of a maze. We'll also define a Maze
dass to represent a collection of rooms. Maze can also find a particular room given a
room number using its RoomNo operation.

84 CREATIONAL PATTERNS
CHAPTER 3

class Maze {
public:

Maze();

void AddRoom(Room*) ;
Room* RoomNo(int) const;

private:
I I . . .

};

RoomNo could do a look-up using a Unear search, a hash table, or even a simple array.
But we won't worry about such details here. Instead, we 11 focus on how to specify the
components of a maze object.
Another class we define is MazeGame, which creates the maze. One straightforward
way to create a maze is with a series of operations that add components to a maze
and then interconnect them. For example, the following member function will create a
maze consisting of two rooms with a door between them:

Maze* MazeGame: :CreateMaze () {
Maze* aMaze = new Maze,
Room* rl = new Room(1)
Room* r2 = new Room(2)
Door* theDoor = new Door(rl, r2)

aMaze->AddRoom (rl) ;
aMaze->AddRoom(r2) ;

rl->SetSide(North, new Wall);
rl->SetSide(East, theDoor);
rl->SetSide(South, new Wall);
rl->SetSide(West, new Wall);

r2->SetSide(North, new Wall);
r2->SetSide(East, new Wall);
r2->SetSide(South, new Wall);
r2->SetSide(West, theDoor);

return aMaze;
}

two rooms°Therpretty C°mpllcated' considering that all it does is create a maze
°brUS,WaySt° make —Pier. For example, the ROOK

code somewhere eke^n ° SJ with wa^s ahead of time. But that just movt
inflexibility. It hard-codes^tenTa™^111 WitJ?,.this nu'niht'r function isn't its sizel
member function either bv ov G , y°Ut- Chan8»ng the layout nu-.ms changin]
thing or by changing parts ofil—whkrh'i Wh'ch — ..implementing the v

hich is error-prone and doesn't promote reu

CREATIONAL PATTERNS 85

The creational patterns show how to malcp u«-e ^ •
smaller. In particular, they will make it eisv to ^exihle' not necessarily
components of a maze. 9Sy t0 Chan&e the classes that define the

Suppose you wanted to reuse an existing maze lavont for *
all things) enchanted mazes. The enchanted mize 1 ' ^ P?16 contammg (°f

like DoorNeedingSpel 1, a door thTt can Z ZTT T ^ of comP°^nts,
with a spell; and EnchantedRoom a room that can have °PG subsequently only
like magic keys or spells. How can you change
mazes with these new classes of objects? creates

IVZa Th*' thefblg8ft barrier to change lies in hard-coding the classes that get instan­
tiated. The creational patterns provide different ways to remove explicit references to
concrete classes from code that needs to instantiate them:

• If CreateMaze calls virtual functions instead of constructor calls to create the
rooms, walls and doors it requires, then you can change the classes that get
instantiated by making a subclass of MazeGame and redefining those virtual
functions. This approach is an example of the Factory Method (107) pattern.

• If CreateMaze is passed an object as a parameter to use to create rooms, walls,
and doors, then you can change the classes of rooms, walls, and doors by passing
a different parameter. This is an example of the Abstract Factory (87) pattern.

• If CreateMaze is passed an object that can create a new maze in its entirety using
operations for adding rooms, doors, and walls to the maze it builds, then you can
use inheritance to change parts of the maze or the way the maze is built. This is
an example of the Builder (97) pattern.

• If CreateMaze is parameterized by various prototypical room, door, and wall
objects, which it then copies and adds to the maze, then you can change the
maze's composition by replacing these prototypical objects with different ones.
This is an example of the Prototype (117) pattern.

The remaining creational pattern, Singleton (127), can ensure there's only one maze
per game and that all game objects have ready access to it—without resorting to global
variables or functions. Singleton also makes it easy to extend or replace the maze
without touching existing code.

ABSTRACT FACTORY 87

ABSTRACT FACTORY
Object Creational

Intent
Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

Also Known As
Kit

Motivation
Consider a user interface toolkit that supports multiple look-and-feel standards,
such as Motif and Presentation Manager. Different look-and-feels define different
appearances and behaviors for user interface "widgets" like scroll bars, windows,
and buttons. To be portable across look-and-feel standards, an application should
not hard-code its widgets for a particular look and feel. Instantiating look-and-
feel-specific classes of widgets throughout the application makes it hard to change
the look and feel later.

We can solve this problem by defining an abstract WidgetFactory class that de­
clares an interface for creating each basic kind of widget. There's also an abstract
class for each kind of widget, and concrete subclasses implement widgets for
specific look-and-feel standards. WidgetFactory's interface has an operation that
returns a new widget object for each abstract widget class. Clients call these oper­
ations to obtain widget instances, but clients aren't aware of the concrete classes
they're using. Thus clients stay independent of the prevailing look and feel.

^oxrc CHAPTER 3
38 CREATIONAL PATTERNS

f cnhrlass of WidgetFactory for each look-and-feel standard.
There is a concretfj the operations to create the appropriate widget for the
Each subclass imp CreateScrollBar operation on the MotifWidgetFac-
,ook and a bar. wM.e ,he corresponding 0fLion
on^hTpMWidgetFacto^ returns a scroll bar for Presentation Manager. Clients
creat^ widgets Solely through the WidgetFactory interface and havenoW
Xe of the classes that implement w.dgets for a ParhculaHook and feel. In other
words, clients only have to commit to an interface defined by an abstract class,
not a particular concrete class.
A WidgetFactory also enforces dependencies between the concrete widget classes.
A Motif scroll bar should be used with a Motif button and a Motif text editor, and
that constraint is enforced automatically as a consequence of using a MotifWid-
getFactory.

Applicability
Use the Abstract Factory pattern when

• a system should be independent of how its products are created, composed,
and represented.

• a system should be configured with one of multiple families of products.

• a family of related product objects is designed to be used together, and you
need to enforce this constraint.

• you want to provide a class library of products, and you want to reveal just
their interfaces, not their implementations.

Structure

ABSTRACT FACTORY 89

Participants
• AbstractFactory (WidgetFactory)

- declares an interface for operations that create abstract product objects.
• ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

- implements the operations to create concrete product objects.
• AbstractProduct (Window, ScrollBar)

- declares an interface for a type of product object.

• ConcreteProduct (MotifWindow, MotifScrollBar)

defines a product object to be created by the corresponding concrete factory.

- implements the AbstractProduct interface.
• Client

- uses only interfaces declared by AbstractFactory and AbstractProduct
classes.

Collaborations
• Normally a single instance of a ConcreteFactory class is created at run-time.

This concrete factory creates product objects having a particular implementa­
tion. To create different product objects, clients should use a different concrete
factory.

• AbstractFactory defers creation of product objects to its ConcreteFactory sub­
class.

Consequences
The Abstract Factory pattern has the following benefits and liabilities:

1. It isolates concrete classes. The Abstract Factory pattern helps you control the
classes of objects that an application creates. Because a factory encapsulates
the responsibility and the process of creating product objects, it isolates clients
from implementation classes. Clients manipulate instances through their
abstract interfaces. Product class names are isolated in the implementation
of the concrete factory; they do not appear in client code.

2. It makes exchanging product families easy. The class of a concrete factory appears
only once in an application—that is, where it's instantiated. This makes it
easy to change the concrete factory an application uses. It can use different
product configurations simply by changing the concrete factory. Because an
abstract factory creates a complete family of products, the whole product
family changes at once. In our user interface example, we can switch from
Motif widgets to Presentation Manager widgets simply by switching e
corresponding factory objects and recreating the interface.

90 CREATIONAL PATTERNS CHAPTER}

3 Tt promotes consistency among products. When product objects ,n a family »
designed to work together, it's important that an application useot^ecteta
only one family at a time. AbstractFactory makes this easy to enfoice.

4 supporting new kinds of products is difficult. Extending abstract factories to
produce new kinds of Products isn't easy. That's because the AbstractFactory
interface fixes the set of products that can be created. Supporting new kindsof
products requires extending the factory interface, which involves changing
the AbstractFactory class and all of its subclasses. We discuss one solution to
this problem in the Implementation section.

Implementation
Here are some useful techniques for implementing the Abstract Factory pattern.

1. Factories as singletons. An application typically needs only one instance of a
ConcreteFactory per product family. So it's usually best implemented as a
Singleton (127).

2. Creating the products. AbstractFactory only declares an interface for creating
products. It's up to ConcreteProduct subclasses to actually create them. The
most common way to do this is to define a factory method (see Factory
Method (107)) for each product. A concrete factory will specify its products
by overriding the factory method for each. While this implementation is
simple, it requires a new concrete factory subclass for each product family,
even if the product families differ only slightly.
If many product families are possible, the concrete factory can be imple­
mented using the Prototype (117) pattern. The concrete factory is initialised
with a prototypical instance of each product in the family, and itcreatesanew
product by cloning its prototype. The Prototype-based approach eliminates
the need for a new concrete factory class for each new product family.
Here s a way to implement a Prototype-based factory in Smalltalk. The
concrete factory stores the prototypes to be cloned in a dictionary called
part Cat a log. The method make : retrieves the prototype and clones it:

make: partName
(partCatalog at: partName) copy

The concrete factory has a method for adding parts to the catalog.

addpart partTemp late named: partName
atal°9 at: PartName put: partTemplate

Prototypes are added to the factory by identifying them with a symbol:

Factory addPart: aPrototype named: •ACMEWidget

treat classes asVrst I!rototyPe"baseci approach is possible in languages J*
asses as first-class objects (Smalltalk and ObjectiveC, for example)- You

ABSTRACT FACTORY 91

of language characteristics, whereas the
language-independent.

Like the Prototype-based factory in Smalltalk just discussed, the class-based
version will have a single instance variable partCatalog, which is a dictio­
nary whose key is the name of the part. Instead of storing prototypes to be
cloned, par tCatalog stores the classes of the products. The method make:

3. Defining extensible factories. AbstractFactory usually defines a different op­
eration for each kind of product it can produce. The kinds of products are
encoded in the operation signatures. Adding a new kind of product requires
changing the AbstractFactory interface and all the classes that depend on it.
A more flexible but less safe design is to add a parameter to operations that
create objects. This parameter specifies the kind of object to be created. It
could be a class identifier, an integer, a string, or anything else that identifies
the kind of product. In fact with this approach, AbstractFactory only needs
a single "Make" operation with a parameter indicating the kind of object
to create. This is the technique used in the Prototype- and the class-based
abstract factories discussed earlier.
This variation is easier to use in a dynamically typed language like Smalltalk
than in a statically typed language like C++. You can use it in C++ only when
all objects have the same abstract base class or when the product objects can
be safely coerced to the correct type by the client that requested them. The
implementation section of Factory Method (107) shows how to implement
such parameterized operations in C++.
But even when no coercion is needed, an inherent problem remains: All
products are returned to the client with the same abstract interface as given
by the return type. The client will not be able to differentiate or make safe
assumptions about the class of a product. If clients need to perform subclass-
specific operations, they won't be accessible through the abstract interface.
Although the client could perform a downcast (e.g., with dynamic cast in
C++), that's not always feasible or safe, because the downcast can fail. This
is the classic trade-off for a highly flexible and extensible interface.

now looks like this:

make: partName
(partCatalog at: partName) new

92 CREATIONAL PATTERNS
CHAPTER 3

Sample Code
We'll apply the Abstract Factory pattern to creating the mazes we discussed at the
beginning of this chapter.
Class MazeFactory can create components of mazes. It builds rooms, walls, and
doors between rooms. It might be used by a program that reads plans for mazes
from a file and builds the corresponding maze. Or it might be used by a program
that builds mazes randomly. Programs that build mazes take a MazeFactory as
an argument so that the programmer can specify the classes of rooms, walls, and
doors to construct.

class MazeFactory {
public:

MazeFactory () ;

virtual Maze* MakeMazeO const
{ return new Maze; }

virtual Wall* MakeWallO const
{ return new Wall; }

virtual Room* MakeRoom(int n) const
{ return new Room(n); }

virtual Door* MakeDoor(Room* rl, Room* r2) const
{ return new Doorfrl, r2);)

} ;

Recall that the member function CreateMaze (page 84) builds a small maze
consisting of two rooms with a door between them. CreateMaze hard-codes the
class names, making it difficult to create mazes with different components.

Here's a version of CreateMaze that remedies that shortcoming by taking a
MazeFactory as a parameter:

Maze* MazeGame: :CreateMaze (MazeFactoryS. factory) {
Maze* aMaze = factory.MakeMaze();
Room* rl = factory.MakeRoom(1);
Room* r2 = factory.MakeRoom(2);
Door* aDoor = factory.MakeDoor(rl, r2);

aMaze->AddRoom(rl);
aMaze->AddRoom(r2);

rl >SetSide(North, factory.MakeWall ()) ;
rl->SetSide(East, aDoor);

rl->SetSidp fw°Uth' ^actorV•MakeWall(1) ,
>SetSide(West, factory.MakeWal1 ()) ;

ABSTRACT FACTORY 93

r2->SetSide(North, factory.MakeWall());
r2->SetSide(East, factory.MakeWall()) ;
r2->SetSide(South, factory.MakeWall())•
r2->SetSide(West, aDoor);

return aMaze;
}

We can create EnchantedMazeFactory, a factory for enchanted mazes, by sub­
classing MazeFactory. EnchantedMazeFactory will override different mem­
ber functions and return different subclasses of Room, Wall, etc.

class EnchantedMazeFactory : public MazeFactory {
public:

EnchantedMazeFactory();

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()) ; }

virtual Door* MakeDoor(Room* rl, Room* r2) const
{ return new DoorNeedingSpell(rl, r2); }

protected:
Spell* CastSpell() const;

) ;

Now suppose we want to make a maze game in which a room can have a bomb
set in it. If the bomb goes off, it will damage the walls (at least). We can make a
subclass of Room keep track of whether the room has a bomb in it and whether the
bomb has gone off. We'll also need a subclass of Wall to keep track of the damage
done to the wall. We'll call these classes RoomWithABomb and BombedWall.

The last class we'll define is BombedMazeFactory, a subclass of MazeFactory
that ensures walls are of class BombedWall and rooms are of class
RoomWithABomb. BombedMazeFactory only needs to override two functions:

Wall* BombedMazeFactory::MakeWall () const {
return new BombedWall;

)

Room* BombedMazeFactory::MakeRoom(int n) const {
return new RoomWithABomb(n);

)

To build a simple maze that can contain bombs, we simply call Creat eMaze with
a BombedMazeFactory.

MazeGame game;
BombedMazeFactory factory;

game.CreateMaze(factory);

CREATIONAL PATTERNS CHAPTER 3

CreateMaze can take an instance of EnchantedMazeFactory ,ust as well to

build enchanted mazes.
Notice that the MazeFactory is just a collection of factory methods. This is the
most common way to implement the Abstract Factory pattern. Also note that
MazeFactory is not an abstract class; thus it acts as both the AbstractFactoryand
the ConcreteFactory. This is another common implementation for simple applica­
tions of the Abstract Factory pattern. Because the MazeFactory is a concrete class
consisting entirely of factory methods, it's easy to make a new MazeFactory by
making a subclass and overriding the operations that need to change.

CreateMaze used the Set Side operation on rooms to specify their sides. If it
creates rooms with a BombedMazeFactory, then the maze will be made up of
RoomWithABomb objects with BombedWall sides. If RoomWithABomb had to
access a subclass-specific member of BombedWal 1, then it would have to cast a
reference to its walls from Wa 11 * to BombedWa 11*. This downcasting is safe as
long as the argument is in fact a BombedWa 11, which is guaranteed to be true if
walls are built solely with a BombedMazeFactory.

Dynamically typed languages such as Smalltalk don't require downcasting, of
course, but they might produce run-time errors if they encounter a Wall where
they expect a subclass of Wal 1. Using Abstract Factory to build walls helps prevent
these run-time errors by ensuring that only certain kinds of walls can be created.

Let's consider a Smalltalk version of MazeFactory, one with a single make
operation that takes the kind of object to make as a parameter. Moreover, the
concrete factory stores the classes of the products it creates.

First, we'll write an equivalent of CreateMaze in Smalltalk:

CreateMaze: aFactory
I rooml room2 aDoor I
rooml = (aFactory make: »room) number: 1.
room2 = (aFactory make: iroom) n u m b e r : 2 .
aDoor = (aFactory make: #door) f r o m : r o o m l t o : r o o m 2 .
rooml atside: #north put: (aFactory m a k e : ((w a l l) .

#east put: aDoor.
(•south put: (aFactory m a k e : # w a l l) .
#west put: (aFactory m a k e : ((w a l l) .
#north put: (aFactory m a k e : t w a l l) .
((east put: (aFactory m a k e : (I w a l l) .
((south put: (aFactory m a k e : ((w a l l) .
((west put: aDoor.

rooml atside
rooml atside
rooml atside
room2 atSide
room2 atside
room2 atside
room2 atSide
Maze new addRoom: rl; addRoom: r2; yourself

instance variabf ^ ImPlernentation section, Ma zeFact ory needs only a sir
the component e.^ar tCatal°g to provide a dictionary whose key is the das:

component. Also recall how we implemented the make: method:

make: partName

(partCatalog at: partName) new

ABSTRACT FACTORY 95

Now we can create a MazeFactory and use it to implement createMaze. We'll
create the factory usmg a method createMazeFac tory of class MazeGame.

createMazeFactory
(MazeFactory new
addPart: Wall named: #wall;
addPart: Room named: #room;
addPart: Door named: #door;
yourself)

A BombedMazeFactory or EnchantedMazeFactory is created by associating
different classes with the keys. For example, an EnchantedMazeFactory could
be created like this:

createMazeFactory
(MazeFactory new
addPart: Wall named: #wall;
addPart: EnchantedRoom named: #room;
addPart: DoorNeedingSpell named: #door;
yourself)

Known Uses
Interviews uses the "Kit" suffix [Lin92] to denote AbstractFactory classes. It de­
fines WidgetKit and DialogKit abstract factories for generating look-and-feel-
specific user interface objects. Interviews also includes a LayoutKit that generates
different composition objects depending on the layout desired. For example, a
layout that is conceptually horizontal may require different composition objects
depending on the document's orientation (portrait or landscape).
ET++ [WGM88] uses the Abstract Factory pattern to achieve portability across
different window systems (X Windows and SunView, for example). The Win-
dowSystem abstract base class defines the interface for creating objects that repre­
sent window system resources (MakeWindow, MakeFont, MakeColor, for exam­
ple). Concrete subclasses implement the interfaces for a specific window system.
At run-time, ET++ creates an instance of a concrete WindowSystem subclass that
creates concrete system resource objects.

Related Patterns
AbstractFactory classes are often implemented with factory methods (Factory
Method (107)), but they can also be implemented using Prototype (117).

A concrete factory is often a singleton (Singleton (127)).

BUILDER 97

BUILDER Object Creational

Intent
Separate the construction of a complex object from its representation so that the
same construction process can create different representations.

Motivation
A reader for the RTF (Rich Text Format) document exchange format should be able
to convert RTF to many text formats. The reader might convert RTF documents
into plain ASCII text or into a text widget that can be edited interactively. The
problem, however, is that the number of possible conversions is open-ended. So
it should be easy to add a new conversion without modifying the reader.

A solution is to configure the RTFReader class with a TextConverter object that
converts RTF to another textual representation. As the RTFReader parses the RTF
document, it uses the TextConverter to perform the conversion. Whenever the
RTFReader recognizes an RTF token (either plain text or an RTF control word), it
issues a request to the TextConverter to convert the token. TextConverter objects
are responsible both for performing the data conversion and for representing the
token in a particular format.

Subclasses of TextConverter specialize in different conversions and formats. For
example, an ASCIIConverter ignores requests to convert anything except plain
text. A TeXConverter, on the other hand, will implement operations for all requests
in order to produce a TpX representation that captures all the stylistic information
in the text. A TextWidgetConverter will produce a complex user interface object
that lets the user see and edit the text.

Par»eRTF() 9

I (I • 8* me next token) (
•witch t Type)
CHAR

builder->ConvertCharacter(t Char)
FONT

butder-»Conv#rtFontChanoe(t Font)
PARA

bullder->Conver1Paragraph()

ASCIIConverter

ConverlCharacter(char)
GetASCIITextO

TextConverter

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagrapht)

X
TeXConverter

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagraphQ
GetTeXTextO

TextWidgetConverter

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagraph()
GetTextWidgetO

98 CREATIONAL PATTERNS CHAPTER 3

Fach kind of converter class takes the mechanism for creating and assembling a
complex object and puts it behind an abstract interface. The converter is separate
from the reader, which is responsible for parsing an RTF document.

The Builder pattern captures all these relationships. Each converter class is called
a builder in the pattern, and the reader is called the director. Applied to this
example the Builder pattern separates the algorithm for interpreting a textual
format (that is, the parser for RTF documents) from how a converted format gets
created and represented. This lets us reuse the RTFReader's parsing algorithm
to create different text representations from RTF documents—just configure the
RTFReader with different subclasses of TextConverter.

Applicability
Use the Builder pattern when

• the algorithm for creating a complex object should be independent of the
parts that make up the object and how they're assembled.

• the construction process must allow different representations for the object
that's constructed.

Structure

Participants
• Builder (TextConverter)

- specifies an abstract interface for creating parts of a Product object.

BUILDER 99

. ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)

iTerfacT ̂ aSSembleS partS °f the Product by implementing the Builder

- defines and keeps track of the representation it creates.

provides an interface for retrieving the product (e.g., GetASCIIText, Get-

• Director (RTFReader)

- constructs an object using the Builder interface.

• Product (ASCIIText, TeXText, TextWidget)

- represents the complex object under construction. ConcreteBuilder builds
the product's internal representation and defines the process by which it's
assembled.

- includes classes that define the constituent parts, including interfaces for
assembling the parts into the final result.

Collaborations
• The client creates the Director object and configures it with the desired Builder

object.
• Director notifies the builder whenever a part of the product should be built.
• Builder handles requests from the director and adds parts to the product.
• The client retrieves the product from the builder.

The following interaction diagram illustrates how Builder and Director cooperate
with a client.

TextWidget).

aClient

X

aDi rector aConcreteBuilder

BuildPartBO X

BuildPartC() X

100 CREATIONAL PATTERNS CHAPTER 3

Consequences
Here are key consequences of the Builder pattern:

1 It lets you vary a product's internal representation. The Builder object provides
the director with an abstract interface for constructing the product. The in­
terface lets the builder hide the representation and internal structure of the
product. It also hides how the product gets assembled. Because the product
is constructed through an abstract interface, all you have to do to change the
product's internal representation is define a new kind of builder.

2. It isolates code for construction and representation. The Builder pattern improves
modularity by encapsulating the way a complex object is constructed and
represented. Clients needn't know anything about the classes that define the
product's internal structure; such classes don't appear in Builder's interface.
Each ConcreteBuilder contains all the code to create and assemble a partic­
ular kind of product. The code is written once; then different Directors can
reuse it to build Product variants from the same set of parts. In the earlier
RTF example, we could define a reader for a format other than RTF, say,
an SGMLReader, and use the same TextConverters to generate ASCIIText,
TeXText, and TextWidget renditions of SGML documents.

3. It gives you finer control over the construction process. Unlike creational pat­
terns that construct products in one shot, the Builder pattern constructs the
product step by step under the director's control. Only when the product
is finished does the director retrieve it from the builder. Hence the Builder
interface reflects the process of constructing the product more than other cre­
ational patterns. This gives you finer control over the construction process
and consequently the internal structure of the resulting product.

Implementation
Ty pically there s an abstract Builder class that defines an operation for each com­
ponent t at a director may ask it to create. The operations do nothing by default,
creating^ overrides operations for components it's interested in

Here are other implementation issues to consider:

bv-^r! f "'u- Conf!^uction interface. Builders construct their products in step-
to allow fh °n erefore the Builder class interface must be general enough

he construction of products for all kinds of concrete builders.

process concerns the model for the construction and assembly
pended to thp G ^ results construction requests are simply ap-
converts and I™ ? u usually sufficient. In the RTF example, the builder
But so f • Ppends the next tC)ken to the text it has converted so far.
earlier. IntheMaT^ need access to parts of the product constructed

< e example we present in the Sample Code, the MazeBuilder

BUILDER 101

interface lets you add a door between existing rooms. Tree structures such
as parse trees that are built bottom-up are another example. !ntha case
he builder would return child nodes to the director, which then would pass

them back to the builder to build the parent nodes.

2. Why no abstract class for products? In the common case, the products produced
• VJ COncrete builders differ so greatly in their representation that there
J? gain, 8lvln8 dlfferent products a common parent class. In
the RTF example, the ASCIIText and the TextWidget objects are unlikely to
have a common interface, nor do they need one. Because the client usually
configures the director with the proper concrete builder, the client is in a
position to know which concrete subclass of Builder is in use and can handle
its products accordingly.

3. Empty methods as default in Builder. In C++, the build methods are intention­
ally not declared pure virtual member functions. They're defined as empty
methods instead, letting clients override only the operations they're inter­
ested in.

Sample Code
We'll define a variant of the CreateMaze member function (page 84) that takes a
builder of class MazeBuilder as an argument.

The MazeBui lder class defines the following interface for building mazes:

class MazeBuilder {
public:

virtual void BuildMazeO { }
virtual void BuildRoom(int room) { }
virtual void BuildDoor(int roomFrom, int roomTo) { }

virtual Maze* GetMazeO { return 0; }
protected:

MazeBuilder();
) ;

This interface can create three things: (1) the maze, (2) rooms with a particular
room number, and (3) doors between numbered rooms. The GetMaze operation
returns the maze to the client. Subclasses of MazeBuilder will override this
operation to return the maze that they build.
All the maze-building operations of MazeBuilder do nothing by default. They re
not declared pure virtual to let derived classes override only those methods in
which they're interested.
Given the MazeBuilder interface, we can change the CreateMaze member
function to take this builder as a parameter.

CREATIONAL PATTERNS CHAPTER3

Maze' MazeGame: :CreateMaze (MazeBui ldert builderl (
builder.BuildMazeO ;

builder.BuildRoom(1);
builder.BuildRoom(2);
builder.BuildDoor(1, 2);

return builder.GetMaze();

}

Compare this version of CreateMaze with the original. Notice how the builder
hides the internal representation of the Maze—that is, the classes that define
rooms, doors, and walls—and how these parts are assembled to complete the
final maze. Someone might guess that there are classes for representing rooms
and doors, but there is no hint of one for walls. This makes it easier to change the
way a maze is represented, since none of the clients of MazeBu i 1 der has to be
changed.
Like the other creational patterns, the Builder pattern encapsulates how ob­
jects get created, in this case through the interface defined by MazeBuilder.
That means we can reuse MazeBui lder to build different kinds of mazes. The
CreateComplexMaze operation gives an example:

Maze* MazeGame ::CreateComplexMaze (MazeBui lderi builder) (
builder.BuildRoom(1) ;
I I . . .
builder.BuildRoom(1001);

return builder.GetMaze();
}

Note that MazeBuilder does not create mazes itself; its main purpose is just tc
define an mterface for creating mazes. It defines empty implementations primarih
for convenience. Subclasses of MazeBui lder do the actual work.

The subclass StandardMazeBuilder is an implementation that builds simple
mazes, t keeps track of the maze it's building in the variable .currentMaze.

piblicStandardMaZeBUilder : publ ic MazeBuilder {

StandardMazeBuilder();

virtual void BuildMazeO;
virtual void BuildRoom(int);
virtual void BuildDoor(int, int);

privlie:1"11 MaZe*

Size^r Comm°"WaU(Room*, Room*I ;
}< Maze —CurrentMaze;

BUILDER 103

3ES tl , l " " - ~
The StandardMazeBuilder constructor simply initializes _ currentMaze.

StandardMazeBuilder::StandardMazeBuilder () {
_currentMaze = 0;

}

BuildMaze instantiates a Maze that other operations will assemble and eventu-
ally return to the client (with GetMaze).

void StandardMazeBuilder: .-BuildMaze () {
_currentMaze = new Maze;

}

Maze 'StandardMazeBuilder::GetMaze () {
Maze* maze = _currentMaze;
return maze;

)

The BuildRoom operation creates a room and builds the walls around it:

void StandardMazeBuilder::BuildRoom (int n) {
if (!_currentMaze->RoomNo(n)) {

Room* room = new Room(n);
_currentMaze->AddRoom(room);

room->SetSide(North, new Wall);
room->SetSide(South, new Wall);
room->SetSide(East, new Wall);
room->SetSide(West, new Wall);

)
)

To build a door between two rooms, StandardMazeBuilder looks up both
rooms in the maze and finds their adjoining wall:

void StandardMazeBuilder: : BuildDoor (int nl, int n2) {
Room* rl = _currentMaze->RoomNo(nl);
Room* r2 = _currentMaze->RoomNo(n2);
Door* d = new Door(rl, r2);

rl->SetSide(CommonWall(rl,r2), d);
r2->SetSide(CommonWall(r2, rl) , d) ;

>

Clients can now use CreateMaze in conjunction with StandardMazeBui lder
to create a maze:

104 CREATIONAL PATTERNS CHAPTER 3

Maze* maze;
MazeGame game;
StandardMazeBuilder builder;

game.CreateMaze(builder);
maze = builder.GetMaze();

We could have put all the StandardMazeBui lder operations in Maze and let
each Maze build itself. But making Maze smaller makes it easier to understand
and modify, and StandardMazeBuilder is easy to separate from Maze. Most
importantly, separating the two lets you have a variety of MazeBuilders,each
using different classes for rooms, walls, and doors.
A more exotic MazeBuilder is Count ingMazeBui lder. This builder doesn't
create a maze at all; it just counts the different kinds of components that would
have been created.

class CountingMazeBuilder : public MazeBuilder (
public:

CountingMazeBuilder();

virtual void BuildMazeO;
virtual void BuildRoom(int);
virtual void BuildDoor(int, int);
virtual void AddWallfint, Direction);

void GetCounts(int&, int&) const;
private:

int _doors;
int _rooms;

} ;

The constructor initializes the counters, and the overridden MazeBuilder oper­
ations increment them accordingly.

CountingMazeBuilder: :CountingMazeBuilder {) (
—rooms = _doors = 0•

}

void CountingMazeBuilder::BuildRoom (int) (
_rooms++;

}

V°it5_doors++^MaZeBUilder 11 BuildDoor (int. int) (
}

void
iS°™""?MazeEuilder; :GetCounts (
int& rooms, int& doors

) const {
rooms = _rooms;

} doors = -doors;

BUILDER 105

Here's how a client might use a Count ingMazeBuilder:

int rooms, doors;
MazeGame game;
CountingMazeBuilder builder;

game.CreateMaze(builder);
builder.GetCounts(rooms, doors) ;

cout << "The maze has "
<< rooms << " rooms and "
« doors << " doors" « endl;

Known Uses
The RTF converter application is from ET++ [WGM88], Its text building block
uses a builder to process text stored in the RTF format.

Builder is a common pattern in Smalltalk-80 [Par90]:

• The Parser class in the compiler subsystem is a Director that takes a Pro-
gramNodeBuilder object as an argument. A Parser object notifies its Pro-
gramNodeBuilder object each time it recognizes a syntactic construct. When
the parser is done, it asks the builder for the parse tree it built and returns it
to the client.

• ClassBuilder is a builder that Classes use to create subclasses for themselves.
In this case a Class is both the Director and the Product.

• ByteCodeStream is a builder that creates a compiled method as a byte ar­
ray. ByteCodeStream is a nonstandard use of the Builder pattern, because
the complex object it builds is encoded as a byte array, not as a normal
Smalltalk object. But the interface to ByteCodeStream is typical of a builder,
and it would be easy to replace ByteCodeStream with a different class that
represented programs as a composite object.

The Service Configurator framework from the Adaptive Communications Envi­
ronment uses a builder to construct network service components that are linked
into a server at run-time [SS94]. The components are described with a config­
uration language that's parsed by an LALR(l) parser. The semantic actions of
the parser perform operations on the builder that add information to the service
component. In this case, the parser is the Director.

Related Patterns
Abstract Factory (87) is similar to Builder in that it too may construct complex
objects. The primary difference is that the Builder pattern focuses on constructing a
complex object step by step. Abstract Factory's emphasis is on families of product
objects (either simple or complex). Builder returns the product as a final step,

CHAPTER 3
CREATIONAL PATTERNS

but as far as the Abstract Factory pattern is concerned, the product gets .turned

immediately.
A Composite (163) is what the builder often builds.

FACTORY METHOD 107

FACTORY METHOD a.o«tal

Intent
Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Also Known As
Virtual Constructor

Motivation
Frameworks use abstract classes to define and maintain relationships between
objects. A framework is often responsible for creating these objects as well.

Consider a framework for applications that can present multiple documents to
the user. Two key abstractions in this framework are the classes Application and
Document. Both classes are abstract, and clients have to subclass them to realize
their application-specific implementations. To create a drawing application, for
example, we define the classes DrawingApplication and DrawingDocument. The
Application class is responsible for managing Documents and will create them as
required—when the user selects Open or New from a menu, for example.

Because the particular Document subclass to instantiate is application-specific, the
Application class can't predict the subclass of Document to instantiate—the Ap­
plication class only knows when a new document should be created, not what kind
of Document to create. This creates a dilemma: The framework must instantiate
classes, but it only knows about abstract classes, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsulates the knowledge
of which Document subclass to create and moves this knowledge out of the
framework.

108 CREATIONAL PATTERNS
CHAPTER 3

an abstract CreateDocument operation on Appli-
AppUcation subclasses re Document subclass. Once an Application sub-
cation to return the app P instantiate application-specific Documents with-

out' knovvingDtheir dass. We c a l l CreateDocument a factory method because if,
responsible for "manufacturing" an object.

Applicability
Use the Factory Method pattern when

. a class can't anticipate the class of objects it must create.

• a class wants its subclasses to specify the objects it creates.

• classes delegate responsibility to one of several helper subclasses, and you
want to localize the knowledge of which helper subclass is the delegate.

Structure

Participants
• Product (Document)

- defines the interface of objects the factory method creates.

• ConcreteProduct (MyDocument)

- implements the Product interface.

• Creator (Application)

declares the factory method, which returns an object of type Product. Cre-
a or may also define a default implementation of the factory method that
returns a default ConcreteProduct object.

may call the factory method to create a Product object.

FACTORY METHOD 109

• ConcreteCreator (MyApplication)

- overrides the factory method to return an instance of a ConcreteProduct.

Collaborations
• Creator relies on its subclasses to define the factory method so that it returns

an instance ot the appropriate ConcreteProduct.

Consequences
Factory methods eliminate the need to bind application-specific classes into your
code. The code only deals with the Product interface; therefore it can work with
any user-defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass
the Creator class just to create a particular ConcreteProduct object. Subclassing is
fine when the client has to subclass the Creator class anyway, but otherwise the
client now must deal with another point of evolution.

Here are two additional consequences of the Factory Method pattern:

1. Provides funks for subclasses. Creating objects inside a class with a factory
method is always more flexible than creating an object directly. Factory
Method gives subclasses a hook for providing an extended version of an
object.
In the Document example, the Document class could define a factory method
called CreateFileDialog that creates a default file dialog object for opening an
existing document. A Document subclass can define an application-specific
file dialog by overriding this factory method. In this case the factory method
is not abstract but provides a reasonable default implementation.

2. Connects parallel class hierarchies. In the examples we've considered so far, the
factory method is only called by Creators. But this doesn't have to be the
case; clients can find factory methods useful, especially in the case of parallel
class hierarchies.
Parallel class hierarchies result when a class delegates some of its responsibi -
ities to a separate class. Consider graphical figures that can be manipulated
interactively; that is, they can be stretched, moved, or rotatedInsmgfa
mouse. Implementing such interactions isn't always <;asy.I: often ̂
storing and updating information that records the state o therefore
at a given time. This state is needed only durmg
it needn't be kept in the figure object. Moreover, thtferent^
differently when the user manipulates them, or ex p , stretchin a text

figure might have the effect of moving an endpoin ,
figure may change its line spacing. ohiprt that
With these constraints, it's better to use a ip^"ion_specificstate
implements the interaction and keeps track of any manipulation p

110

CHAPTER 3
CREATIONAL PATTERNS

. fitnires win use different Manipulator subclasses to
that's needed. Different gu resulting Manipulator class hierarchy

Z&SiSZSSZZ-"'*-*
Figure

CreateManipulator()

1 r r Manipulator Manipulator

DownCkekt)
OngO
UpOckO

A I
1 ZZA-LA

TextFigure
Lino Manipulator T ait Manipulator

CreateManipulator() CreateManipulator()
DownCKcfcO

DragO

UpCIK*0 i m

DonanttcM)

[>•«()

UpCMO

The Figure class provides a CreateManipulator factory method that lets
clients create a Figure's corresponding Manipulator. Figure subclasses over­
ride this method to return an instance of the Manipulator subclass that sright
for them. Alternatively, the Figure class may implement CreateManipulator
to return a default Manipulator instance, and Figure subclasses may simply
inherit that default. The Figure classes that do so need no corresponding
Manipulator subclass—hence the hierarchies are only partially parallel.
Notice how the factory method defines the connection between the two class
hierarchies. It localizes knowledge of which classes belong together.

Implementation
Consider the following issues when applying the Factory Method pattern:

1. Two major varieties. The two main variations of the Factory Method pattern are
(1) the case when the Creator class is an abstract class and does not provide
an implementation for the factory method it declares, and (2) the case when
the Creator is a concrete class and provides a default implementation for
the factory method. It's also possible to have an abstract class that defines a
default implementation, but this is less common.
The first case requires subclasses to define an implementation, because there's
no reasonable default. It gets around the dilemma of having to instantiate
unforeseeable classes. In the second case, the concrete Creator uses the fac­
tory method primarily for flexibility. It's following a rule that says, "Create
o jects in a separate operation so that subclasses can override the way they re
create . This rule ensures that designers of subi lasses ian change the class
of objects their parent class instantiates if necessary.

f^rametenzed factory methods. Another variation on the pattern ldt the fae­
ry me o create multiple kinds of products. The factory method takes a

FACTORY METHOD 111

parameter that identifies the kind of object to creafP All . .u r

m e t h o d c r e a t e s w i l l s h a r e t h e P r o d u c t i n t e r f a c e I n HIP n ^
Application might support different
Document an extra parameter to specify the kind of document to create.
The Umdraw graphical editing framework [VL90] uses this approach for
reconstruct.ng objects saved on disk. Unidraw defines a Creator claTs witha
factory method c rea t e that takes a class identifier as an argument Tteclass
identifier specifies the class to instantiate. When Unidraw saves an object to
disk, it writes out the class identifier first and then its instance variables
When it reconstructs the object from disk, it reads the class identifier first.
Once the class identifier is read, the framework calls Create, passing the
identifier as the parameter. Create looks up the constructor for the corre­
sponding class and uses it to instantiate the object. Last, Create calls the
object's Read operation, which reads the remaining information on the disk
and initializes the object's instance variables.
A parameterized factory method has the following general form, where
MyProduct and YourProduct are subclasses of Product:

class Creator {
public:

virtual Product* Create(Productld) ;
) ;

Product* Creator::Create (Productld id) {
if (id = = MINE) return new MyProduct;
if (id == YOURS) return new YourProduct;
// repeat for remaining products...

return 0;
)

Overriding a parameterized factory method lets you easily and selectively
extend or change the products that a Creator produces. You can introduce
new identifiers for new kinds of products, or you can associate existing
identifiers with different products.
For example, a subclass MyCreator could swap MyProduct and YourProd­
uct and support a new TheirProduct subclass:

Product* MyCreator::Create (Productld id) {
if (id == YOURS) return new MyProduct;
if (id == MINE) return new YourProduct;

// N.B.: switched YOURS and MINE

if (id == THEIRS) return new TheirProduct;

4- / n \ • // CrlllGCl if Si 1 O til© ITS f SI 1
return Creator::Create(id),

Notice that the last thing this opecat.ondo^ iscall Create on ^parent
class. That's because MyCreator: : Create handle y

CHAPTER 3
CREATIONAL PATTERNS

t ciass. it isn't interested in other classes.
THEIRS differently than the pa ^ produc(s created, and it defere re-
Hence MyCreator aetata ^ few ducts to its parent.

, rSS-Sssssr "nd
other interesting v ^ method that returns the class of the object
Smalltalk program!5 °fte factory method can use this value to create
to be instantiated. A store or even compute this value. rs :".v.rr„fss8 z* . » < < * » « — « . » s

instantiated. DoCument example can define a documentClass
A Smalltalk versio ^^ ̂ documentClass method returns the
pmpe°r Do°cumePnt class for instantiating documents. The implementation of
SoStcTass in MVAPP1 icat ion returns the My Document class. Thus
in class Application we have

clientMethod
document := self documentClass new.

documentClass
self subclassResponsibility

In class My Application we have

documentClass
~ MyDocument.

which returns the class My Document to be instantiated to Appl icat ion.
An even more flexible approach akin to parameterized factory methods is to
store the class to be created as a class variable of Appl icat .on. That way
you don't have to subclass Appl icat ion to vary the product.
Factory methods in C++ are always virtual functions and are often pure vir­
tual. Just be careful not to call factory methods in the Creator's constructor—
the factory method in the ConcreteCreator won't be available yet.
You can avoid this by being careful to access products solely through acces­
sor operations that create the product on demand. Instead of creating the
concrete product in the constructor, the constructor merely initializes it toO.
The accessor returns the product. But first it checks to make sure the product
exists, and if it doesn't, the accessor creates it. This technique is sometimes
called lazy initialization. The following code shows a typical implementa-

FACTORY METHOD 113

class Creator {
public:

Product* Get Product();
protected:

virtual Product* CreateProduct));
private:

Product* .product;
};

Product* Creator::GetProduct () {
if (_product ==0) {

.product = CreateProduct() ;
}
return .product;

)

4. Using templates to avoid subclassing. As we've mentioned, another potential
problem with factory methods is that they might force you to subclass just
to create the appropriate Product objects. Another way to get around this in
C++ is to provide a template subclass of Creator that's parameterized by the
Product class:

class Creator {
public:

virtual Product* CreateProduct() = 0;
> ;
template <class TheProduct>
class StandardCreator: public Creator {
public:

virtual Product* CreateProduct));
) ;

template <class TheProduct>
Product* standardCreator<TheProduct>::CreateProduct () {

return new TheProduct;
}

With this template, the client supplies just the product class—no subclassing
of Creator is required.

class MyProduct : public Product {
public:

MyProduct();
// ...

} ;

StandardCreator<MyProduct> myCreator;

5. Naming conventions. It's good practice to use naming convenhons^
it clear vou're usine factory methods. For example, the MacApp Macmtosn
applfcahon "amZrk [A>] always declares the a^'ract o^rahonthat
defines the factory method as Class- DoMakeClass () , w h e r e
the Product class.

! 14 CREATIONAL PATTERNS

CHAPTER 3

Sample Code builds and returns a maze One problem
The function CreateMaze (page the classes of maze, rooms, doors, and
with this function is thê glasses choose these components.

and door objects:

class MazeGame {
public:

Maze* CreateMaze() ;

// factory methods:

virtual Maze* MakeMazeO const
{ return new Maze;)

virtual Room* MakeRoom(int n) const
{ return new Room(n); I

virtual Wall* MakeWallO const
{ return new Wall; }

virtual Do o r * MakeDoor (Room* rl, Room* r2> const
{ return new Door(rl, r2);)

} ;

Each factory method returns a maze component of a given type. MazeGame pro­
vides default implementations that return the simplest kinds »»t maze, rooms,
walls, and doors.
Now we can rewrite CreateMaze to use these factory methods:

Maze* MazeGame::CreateMaze () {
Maze* aMaze = MakeMazeO;

Room* rl = MakeRoom(1);
Room* r2 = MakeRoom(2);
Door* theDoor = MakeDoor(rl, r2);

aMaze->AddRoom(rl);
aMaze->AddRoom(r2);

rl->SetSide (North, MakeWallO);
rl->SetSide(East, theDoor);
rl->SetSide (South, MakeWallO);
rl->SetSide (West, MakeWallO);

r2->SetSide (North, MakeWallO);
r2->SetSide (East, MakeWallO);
r2->SetSide (South, MakeWallO);
t2->SetSide(West, theDoor);

FACTORY METHOD 115

return aMaze;
)

Different games can subclass Ma z eGame to specialize parts of the maze. MazeGame
subclasses can redefine some or all of the factory methods to specify variations
in products. For example, a BombedMazeGame can redefine the Room and Wall
products to return the bombed varieties:

class BombedMazeGame : public MazeGame {
public:

BombedMazeGame();

virtual Wall* MakeWall() const
{ return new BombedWall; }

virtual Room* MakeRoom(int n) const
{ return new RoomWithABomb(n) ; }

) ;

An EnchantedMazeGame variant might be defined like this:

class EnchantedMazeGame : public MazeGame {
public:

EnchantedMazeGame();

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()); }

virtual Door* MakeDoor(Room* rl, Room* r2) const
(return new DoorNeedingSpell(rl, r2); }

protected:
Spell* CastSpell() const;

)J

lown Uses
Factory methods pervade toolkits and

ample is a typical use in MacApp and ET++ lWCM&»j. me F

is from Unidraw.

Class View in the Smalltalk-80 ^"factory
defaultController that creates a co"trolle ' j of their default controller
method (Par90l. But subclasses of View specify the ^ frQm which default-
by defining defaultControllerClass, n ^lass is the real factory method,
Controller creates instances. So defaultControllerClass
that is, the method that subclasses should override. Hpfined

A more esoteric example in Smalltalk-80 is the fac^^^ssesf Tl^enables a class
by Behavior (a superclass of all objects representing classes).

CHAPTER 3
n6 CREATIONAL PATTERNS

t its source code. For example, a client can define
to use a customized sourCe code of a class with emfn-dded SQL
a class SQLParser to analyze'* ^ parselClass to return the standard
Statements. The Beha™>r class embedded SQL statementsovemdes
Smalltalk Parser class. A class returns the SQLParser class.
this method (as a c ass Technologies |!ON94| uses Factory Method to
The Orbix ORB system from I p (2Q7)) when an ob}(Xi

generate an approp^ate ^ Y hod makes it «tfy lO replace the default

Related Patterns
Abstract Factory (87) is often implemented with factory methods The Mo tvahon
example m the Abstract Factory pattern illustrates Factory Method as well.

Factory methods are usually called within Template Method. (325). In the door-
ment example above, NewDocument is a template method.
Prototypes (117) don't require subclassing Creator. However, they often require
an Initialize operation on the Product class Creator uses Initialize to initialize the
object. Factory Method doesn't require such an operation.

PROTOTYPE 117

PROTOTYPE NK. . ,
Object Creational

Intent
Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.

Motivation
You could build an editor for music scores by customizing a general framework
for graphical editors and adding new objects that represent notes, rests, and
staves. The editor framework may have a palette of tools for adding these music
objects to the score. The palette would also include tools for selecting, moving,
and otherwise manipulating music objects. Users will click on the quarter-note
tool and use it to add quarter notes to the score. Or they can use the move tool to
move a note up or down on the staff, thereby changing its pitch.

Let's assume the framework provides an abstract Graphic class for graphical com­
ponents, like notes and staves. Moreover, it'll provide an abstract Tool class for
defining tools like those in the palette. The framework also predefines a Graphic-
Tool subclass for tools that create instances of graphical objects and add them to
the document.

But GraphicTool presents a problem to the framework designer. The classes for
notes and staves are specific to our application, but the GraphicTool class belongs
to the framework. GraphicTool doesn't know how to create instances of our music
classes to add to the score. We could subclass GraphicTool for each kind of music
object, but that would produce lots of subclasses that differ only in the kind of
music object they instantiate. We know object composition is a flexible alternative
to subclassing. The question is, how can the framework use it to parameterize
instances of GraphicTool by the class of Graphic they're supposed to create?

The solution lies in making GraphicTool create a new Graphic by copying or
"cloning" an instance of a Graphic subclass. We call this instance a prototype.
GraphicTool is parameterized by the prototype it should clone and add to the
document. If all Graphic subclasses support a Clone operation, then the Graphic-
Tool can clone any kind of Graphic.
So in our music editor, each tool for creating a music object is an instance of
GraphicTool that's initialized with a different prototype, ac _TaP ,
stance will produce a music object by cloning its prototype an a
to the score.

] 18 CREATIONAL PATTERNS
CHAPTER 3

Tool

Manipulate()

RotateTool

I
Draw<Po*Oon)

OotmO

Manipulate*)

GraphicTool

Manipulate*) <p

prototype
O—1

p = prototype->Clone()

while (user drags mouse) {
p->Draw(new position)

insert p into drawing

I
Staff

Draw(Po8rt»on)
Clone*)

MuttcsiNot*

I
Whole Note

Draw* Portion)
Clone*) 9

Dree<Poe>on)

CtonaO 9

return copy of aetf ^ reeawcopyofM*^

We can use the Prototype pattern to reduce the number of evo^further
We have separate classes for whole notes and half notes, but that » probably
unnecessary. Instead they could be instances of the same class Initialized with
different bitmaps and durations. A tool for creating whole notes Ins onus just a
GraphicTool whose prototype is a MusicalNote initialized to be a whole note Ins
can reduce the number of classes in the system dramatically. It also makes it easier
to add a new kind of note to the music editor.

Applicability
Use the Prototype pattern when a system should be independent of how its
products are created, composed, and represented; ami

• when the classes to instantiate are specified at run-time, for example, by
dynamic loading; or

• to avoid building a class hierarchy of factories that parallels the class hierar­
chy of products; or

• when instances of a class can have one of only a few different combinations
of state. It may be more convenient to install a corresponding number of
prototypes and clone them rather than instantiating the class manually, each
time with the appropriate state.

Structure

PROTOTYPE 119

Client

Operation)) 9

prototype

p <= prototype->Clone() 5

Prototype

Clonef)

return copy of self

~1
ConcretePrototypel ConcretePrototype2

Clone() 9 CloneQ 9

return copy of self

Participants
• Prototype (Graphic)

- declares an interface for cloning itself.

• ConcretePrototype (Staff, WholeNote, HalfNote)

- implements an operation for cloning itself.

• Client (GraphicTool)

- creates a new object by asking a prototype to clone itself.

Collaborations
• A client asks a prototype to clone itself.

Consequences
Prototype has many of the same consequences that Abstract Factory (87) and
Builder (97) have: It hides the concrete product classes from the client, thereby
reducing the number of names clients know about. Moreover, these patterns let a
client work with application-specific classes without modification.

Additional benefits of the Prototype pattern are listed below.

1. Adding and removing products at run-time. Prototypes let y°"^™totyp.
new concrete product class into a system simp y y reS* , creational
ical instance with the client. That's a bit more
patterns, because a client can install and remove prototypes at run time.

2. Specifying new objects by varying values. Hlghtyfor an
fine new behavior through object composition-by specifying va

CHAPTER 3

CREATIONAL PATTERNS
. ,nd not by defining new classes. You ef-

objecfs variables, «amP ^ b instantiating existing cUsses and
fectively define new kinds °' f client objects. A client can exhibit
registering '^^XCs^nsibility to the prototype.
new behavior by deleg g new »classes" without programming.
This kind of design lets "sers u to instantiating a class. The Prototype
„ , -x a nrototvpe is simuai J In our music ixu» ~ ;c Qimilar to insicuui«"»"f> ••
In fact, cloning ber of classes a system needs. In
pattern can^at^duce ^ a Umjtless variety of music ob,ects.
editor, one Graph,cTool applications build objects

3. Specifying new objects f jrcuit design, for example, build cir-
from parts and subparts. Editor:Jo tion5 ^ ̂ y0„

t̂e1:"-dê ed structures, say, to use a specific subcircui,

again and again. We simply add this subcircuil as

Itltotype' to the pTlerte of available circuit elements. As long as the com-
'p£St object implements Clone as a deep copy, circuits with different
structures can be prototypes.

4. Reduced subclassing. Factory Method (107. olton produces a hierarchy of C re­
ator classes that parallels the product class hierarchy. The I rototype pattern
lets you clone a prototype instead of asking a factory method to make a new
object. Hence you don't need a Creator class hierarchy at all. rhis benefit
applies primarily to languages like C++ that don't treat claues as first-class
objects. Languages that do, like Smalltalk and Objective C, derive less bene
fit, since you can always use a class object as a creator. Class objects already
act like prototypes in these languages.

5. Configuring an application with classes dynamically. Some run-time environ­
ments let you load classes into an application dynamically. The Prototype
pattern is the key to exploiting such facilities in a language likeC ++.
An application that wants to create instances of a dynamically loaded class
won'tbe able to reference its constructor statically. Instead, the run-time envi­
ronment creates an instance of each class automatically when it 's loaded, and
it registers the instance with a prototype manager (see the Implementation
section). Then the application can ask the prototype manager for instances of
newly loaded classes, classes that weren't linked with the program originally.
The ET++ application framework IWGM881 has a run-time system that uses
this scheme.

The mam liability of the Prototype pattern is that each subclass of Prototype must
implement the clone operation, which may be difficult. For example, adding
Clone is difficult when the classes under consideration already exist. Implement­
ing c one can be difficult when their internals inc lude objec is that don't BUppOlt
copying or have circular references.

~l Such applicationsTeflecTth^Composite (163) and Decorator (175) patterns.

PROTOTYPE 121

mplementation
Prototype is particularly useful with static languages like C++, where classes are
not objects, and little or no type information is available at run-time It's less
important in languages like Smalltalk or Objective C that provide what amounts
toa prototype (i.e., a class object) for creating instances of each class. This pattern is
built into prototype-based languages like Self [US87], in which all object creation
happens by cloning a prototype.

Consider the following issues when implementing prototypes:

1. Using a prototype manager. When the number of prototypes in a system isn't
fixed (that is, they can be created and destroyed dynamically), keep a registry
of available prototypes. Clients won't manage prototypes themselves but will
store and retrieve them from the registry. A client will ask the registry for a
prototype before cloning it. We call this registry a prototype manager.
A prototype manager is an associative store that returns the prototype match­
ing a given key. It has operations for registering a prototype under a key and
for unregistering it. Clients can change or even browse through the registry
at run-time. This lets clients extend and take inventory on the system without
writing code.

2. Implementing the Clone operation. The hardest part of the Prototype pattern
is implementing the Clone operation correctly. It's particularly tricky when
object structures contain circular references.
Most languages provide some support for cloning objects. For example,
Smalltalk provides an implementation of copy that's inherited by all sub­
classes of Object. C++ provides a copy constructor. But these facilities don t
solve the "shallow copy versus deep copy" problem [GR83]. That is, does
cloning an object in turn clone its instance variables, or do the clone and
original just share the variables?
A shallow copy is simple and often sufficient, and that's what Smalltalk
provides bv default. The default copy constructor in C++ does a
wise copy, which means pointers will be shared between the copy and the
original. But cloning prototypes with complex structures usually'
deep copy, because the clone and the original must be independent. ̂ ^fore
you must ensure that the clone's components are clones of the Prototype
components. Cloning forces you to decide what if anything will be shared.
If objects in the system provide Save and Load operations, then you^n use
them to provide a default implementation of Clone simpy y §
object and loading it back immediately. The Save
into a memory buffer, and Load creates a duplicate by reconstructing

object from the buffer.

3. Initializing clones. White s°me to values
is, others will want to initialize some or all oi

CHAPTER 3

122 CREATIONAL PATTERNS
ran't pass these values in the Clone oper-

of their choosing. You 8®^ ^tween classes of prototypes Some
ation, because then ™mber w parame.ers. others won . need
prototypes might need mulup e lKm preciudes a uniform cloning
any. Passing parameters m tne
interface. . .vr)P classes already define operations for
It might be the case that your pn ̂ ^ ̂ ̂ usc tlu-e operations immedi-
(re)settingkey pieces of sta^ . haVe to introduce an Initialize
ately after cloning. If not t y h (akes initialization parame-
operation (see the Sampte Code^sert ^-ooofdta^ Beware ol
ters as arguments and se copies may have to be deleted (either
deep-copying Clone »P- ^ J^L.,al,zr them,
explicitly or within Initialize; oeiui y

Sample Code
m subclass of the MazeFactory class

We'll define ai MaizeI r ' ctory wi„ be initialized with prototypes of the
Ibjerts ft wfil create so that we don't have to subclass it just to change the classes
of walls or rooms it creates.
MazePrototypeFactory augments the MazeFactory interface with a con-
structor that takes the prototypes as arguments:

class MazePrototypeFactory : public MazeFactory

public:
MazePrototypeFactory (Maze*, Wall", Room*. Door*);

virtual Maze* MakeMazeO const;
virtual Room* MakeRoom(int) const;
virtual Wall* MakeWall() const;
virtual Door* MakeDoor(Room*, Room*) const;

private:
Maze* _prototypeMaze;
Room* _prototypeRoom;
Wall* _prototypeWall;
Door* _prototypeDoor;

The new constructor simply initializes its prototypes:

MazePrototypeFactory: :MazePrototypeFactory (
^ ^ Maze* m. Wall* w, Room* r, Door* d

_prototypeMaze = m;
_prototypeWall = w;
_prototypeRoom = r;
_prototypeDoor = d:

}

PROTOTYPE 123

The member functions for creating walls, rooms, and doors are similar Each
dones a prototype and then initializes it. Here are the definitions of MakeWall
and MakeDoor:

Wall* MazePrototypeFactoryMakeWall () const {
return _prototypeWall->Clone();

>

Door* MazePrototypeFactory: :MakeDoor (Room* rl, Room *r2) const {
Door* door = _prototypeDoor->Clone() ;
door->Initialize(rl, r2);
return door;

)

We can use MazePrototypeFactory to create a prototypical or default maze
just by initializing it with prototypes of basic maze components:

MazeGame game;
MazePrototypeFactory simpleMazeFactory(

new Maze, new Wall, new Room, new Door
> ;

Maze* maze = game.CreateMaze(simpleMazeFactory);

To change the type of maze, we initialize MazePrototypeFactory with a dif­
ferent set of prototypes. The following call creates a maze with a BombedDoor
and a RoomWithABomb:

MazePrototypeFactory bombedMazeFactory(
new Maze, new BombedWall,
new RoomWithABomb, new Door

) ;

An object that can be used as a prototype, such as an instance of Wal l , must
support the Clone operation. It must also have a copy constructor for cloning-.It
may also need a separate operation for reinitializing internal state, e a
Initialize operation to Door to let clients initialize the clone s rooms.

Compare the following definition of Door to the one on page 83.

class Door : public MapSite {
public:

Door();
Door(const Doors.) ;

virtual void Initialize(Room*, Room*);
virtual Door* Clone() const;

CREATIONAL PATTERNS
CHAPTER 3

private:
Room1

Room:
* _rooml;
,* _room2;

} ;

Door::Door
_rooml
_room2

{const Door& other) {
= other._rooml;
= other._room2;

}

void poor::initialize (Room* rl. Room* x2) I
rooml = r1;
room2 = r2;

Door* Door::Clone () const {
return new Door(*this);

}

The BombedWall subclass must override Clone and implement a corresponding
copy constructor.

class BombedWall : public Wall {
public:

BombedWall();
BombedWall(const BombedWa11&) ;

virtual Wall* Clone() const;
bool HasBomb();

private:
bool _bomb;

} ;

BombedWall:: BombedWall (const BombedWallfc o the r) : Wall(o the r) (
_bomb = other._bomb;

}

Wall* BombedWall::Clone () const {
return new BombedWall(*this);

}

Although BombedWall: : Clone returns a Wall*, its implementation returns a
pointer to a new instance of a subclass, that is, a BombedWa 11 *. We define Clone
like this m the base class to ensure that clients th.it clone the prototype don't have
to know about their concrete subclasses. Clients should never need to downcast
the return value of Clone to the desired type.

In Smalltalk, you can reuse the standard copy method inherited from Object
one any MapSite. You can use MazeFactory to produce the prototypes

PROTOTYPE 125

you'll need; for example, you can create a room by supplying the mme a.™
3 diC"0nary 'hat maPS "ameS f° Proto'yP- make"

make: partName
(partCatalog at: partName) copy

Given appropriate methods for initializing the MazeFactory with prototypes,
you could create a simple maze with the following code:

CreateMaze
on: (MazeFactory new

with: Door new named: Kdoor;
with: Wall new named: #wall;
with: Room new named: (troom;
yourself)

where the definition of the on: class method for CreateMaze would be

on: aFactory
I rooml room2 I
rooml (aFactory make: iroom) location: 101.
room2 := (aFactory make: itroom) location: 201.
door := (aFactory make: idoor) from: rooml to: room2.

rooml
atSide: #north put: (aFactory make: #wall);
atSide: #east put: door;
atSide: #south put: (aFactory make: #wall);
atSide: Iwest put: (aFactory make: #wall).

room2
atSide: #north put: (aFactory make: #wall);
atSide: #east put: (aFactory make: #wall);
atSide: #south put: (aFactory make: #wall);
atSide: *west put: door.

* Maze new
addRoom: rooml;
addRoom: room2;
yourself

iown Uses
Perhaps the first example of the Prototype pattern was in Ivan Sutherland's Sketch­
pad system |Sut631. The first widely known application of the pattern in an objec -
oriented language was in ThingLab, where users could form a composi e o je
and then promote it to a prototype by installing it in a library o "r"®*
jects [BorSll. Goldberg and Robson mention prototypes as a Patte™j '
Coplien [Cop92l gives a much more complete description, e e -ations

related to the Prototype pattern for C++ and gives many examp e

Etgdb is a debugger front-end based on ET++ that provides a
interface to different line-oriented debuggers. Each debugger as
tag DebuggerAdaptor subclass. For example, GdbAdaptor adapts etgdb

CHAPTER 3
126 CREATIONAL PATTERNS

f r Ml J edb while SunDbxAdaptor adapts etgdb to Sun's dbx
command syntax of GINU g , Debugger Adaptor classes hard-coded into

DebuggerAdaptor that works for that del ugg .

thattSdPbPv°rheVMo°d ComToser - beled as a prototype by placing it in this
The Prototype pattern lets Mode Composer support an untauted set of

interaction techniques.
The music editor example discussed earlier is based on the Unidraw drawing
framework [VL90J.

Related Patterns
Prototype and Abstract Factory (87) are competing patterns in some ways, as we
discuss at the end of this chapter. They can also be used together, however. An
Abstract Factory might store a set of prototypes from which to clone and return
products objects.
Designs that make heavy use of the Composite (163) and Decorator (175) patterns
often can benefit from Prototype as well.

SINGLETON 127

SINGLETON Object Creational

Intent
Ensure a class only has one instance, and provide a global point of access to it.

Motivation
It's important for some classes to have exactly one instance. Although there can be
many printers in a system, there should be only one printer spooler. There should
be only one file system and one window manager. A digital filter will have one
A/D converter. An accounting system will be dedicated to serving one company.

How do we ensure that a class has only one instance and that the instance is easily
accessible? A global variable makes an object accessible, but it doesn't keep you
from instantiating multiple objects.

A better solution is to make the class itself responsible for keeping track of its sole
instance. The class can ensure that no other instance can be created (by intercepting
requests to create new objects), and it can provide a way to access the instance.
This is the Singleton pattern.

Applicability
Use the Singleton pattern when

• there must be exactly one instance of a class, and it must be accessible to
clients from a well-known access point.

• when the sole instance should be extensible by subclassing, and clients
should be able to use an extended instance without modifying their code.

Structure

128
_rDM, CHAPTER 3

CREATIONAL PATTERNS

Participants
• Singleton nngleton . .

„ Tn,tance operation that lets clients access its unique instance.
"" Instance is a class operation (that is, a class method in Smalltalk and a static

member function in C++).
_ mav be responsible for creating its own unique instance.

Collaborations
. Clients access a Singleton instance solely through Singleton s instance opera-

tion.

Consequences
The Singleton pattern has several benefits:

1. Controlled, access to sole instance. Because the Singleton class encapsulates its
sole instance, it can have strict control over how and when clients access it.

2. Reduced name space. The Singleton pattern is an improvement over global
variables. It avoids polluting the name space with global variables that store
sole instances.

3. Permits refinement of operations and representation. The Singleton class may be
subclassed, and it's easy to configure an application with an instance of this
extended class. You can configure the application with an instance of the
class you need at run-time.

4. Permits a variable number of instances. The pattern makes it easy to change your
mind and allow more than one instance of the Singleton class. Moreover,
you can use the same approach to control the number of instances that
the application uses. Only the operation that grants access to the Singleton
instance needs to change.

5. More flexible than class operations. Another way to package a singleton's func­
tionality is to use class operations (that is, static member functions in C++ or
class methods in Smalltalk). But both of these language techniques make it
hard to change a design to allow more than one instance of a class. Moreover,
static member functions in C++- are never virtual, so subclasses can't override
them polymorphically.

Implementation
Here are implementation issues to consider when using the Singleton pattern:

1. Ensuring a unique instance. The Singleton pattern makes the sole instance a
norma instance of a class, but that class is written so that only one instance

SINGLETON 129

can ever be created. A common way to do this is to hide the operation that
creates the instance behind a class operation (that is, either a static member
function or a class method) that guarantees only one instance is created. This
operation has access to the variable that holds the unique instance, and it
ensures the variable is initialized with the unique instance before returning
its value. This approach ensures that a singleton is created and initialized
before its first use.
You can define the class operation in C++ with a static member function
Instance of the S i ng 1 e t on class. S i ng 1 e t on also defines a static member
variable .instance that contains a pointer to its unique instance.
The Singleton class is declared as

class Singleton {
public:

static Singleton* Instanced ;
protected:

Singleton();
private:

static Singleton* .instance;
) ;

The corresponding implementation is

Singleton* Singleton::_instance = 0;

Singleton* Singleton::Instance () {
if (.instance •• 0) (

.instance = new Singleton;
)
return .instance;

)

Clients access the singleton exclusively through the instance member func­
tion. The variable .instance is initialized to 0, and the static member func­
tion Instance returns its value, initializing it with the unique instance if i
is 0. Instance uses lazy initialization; the value it returns isn t created and
stored until it's first accessed.
Notice that the constructor is protected. A client that tries to m^ntiate
Singleton directly will get an error at compile-tune. This ensures that o y
one instance can ever get created.
Moreover, since the .instance is a pointer to a gingle-
Instance member function can assign a pointer to eCode

ton to this variable. We'll give an example of this in the Samp •

There's another thing to note about the C++ ^"automatic
to define the singleton as a global or static object and then rely on
initialization. There are three reasons for this:
(a) We can't guarantee that only one instance of a static object will ever be

declared.

CHAPTER 3
CREATIONAL PATTERNS

nnrtlloh information to instantiate every singleton
(W rst^fSlizalion time A singleton might requite values that are

computed later in the program's execution.

(c) C++ doesn't define the order in which constructors for global objects are
called across translation units [ES90], This means that no dependences
can exist between singletons; if any do, then errors are mevttable.

An added (albeit small) liability of the global/static object approach is that
itforces all singletons to be created whether they are used or not. Ustng a
static member function avoids all of these problems.
In Smalltalk, the function that returns the unique instance is implemented
as a class method on the Singleton class. To ensure that only one instance is
created, override the new operation. The resulting Singleton class might have
the following two class methods, where Solelnstance is a class variable
that is not used anywhere else:

new
self error: 'cannot create new object'

default
Solelnstance isNil ifTrue: [Solelnstance super new).
" Solelnstance

2. Subclassing the Singleton class. The main issue is not so much defining the
subclass but installing its unique instance so that clients will be able to use
it. In essence, the variable that refers to the singleton instance must get
initialized with an instance of the subclass. The simplest technique is to
determine which singleton you want to use in the Singleton's Instance
operation. An example in the Sample Code shows how to implement this
technique with environment variables.
Another way to choose the subclass of Singleton is to take the implementation
of Instance out of the parent class (e.g., MazeFactory) and put it in the
subclass. That lets a C++ programmer decide the class of singleton at link-
time (e.g., by linking in an object file containing a different implementation)
but keeps it hidden from the clients of the singleton.
The link approach fixes the choice of singleton class at link-time, which
makes it hard to choose the singleton class at run-time. Using conditional
statements to determine the subclass is more flexible, but it hard-wires the
set of possible Singleton classes. Neither approach is flexible enough in all
cases.

A more flexible approach uses a registry of singletons. Instead of having
Instance define the set of possible Singleton classes, the Singleton classes
can register their singleton instance by name in a well-known registry.
The registry maps between string names and singletons. When Ins tance
nee s a sing eton, it consults the registry, asking for the singleton by name.

SINGLETON 131

The registry looks up the corresponding singleton (if it exists) and returns it
This approach frees Instance from knowing all possible Singleton classes
or instances. All it requires is a common interface for all Singleton classes
that includes operations for the registry:

class Singleton {
public:

static void Register(char* name, Singleton*);
static Singleton* Instanced ;

protected:
static Singleton* Lookup(const char* name);

private:
static Singleton* .instance;
static List<NameSingletonPair>* .registry;

Register registers the Singleton instance under the given name. To keep
the registry simple, we'll have it store a list of NameSingletonPair objects.
Each NameSingletonPair maps a name to a singleton. The Lookup op­
eration finds a singleton given its name. We'll assume that an environment
variable specifies the name of the singleton desired.

Singleton* Singleton::Instance () {
if (.instance == 0) {

const char* singletonName = getenv("SINGLETON") ;
// user or environment supplies this at startup

.instance = Lookup(singletonName);
// Lookup returns 0 if there's no such singleton

)
return .instance;

)

Where do Singleton classes register themselves? One possibility is in their
constructor. For example, a MySingleton subclass could do the following:

MySingleton::MySingleton() {

)
Singleton::Register("MySingleton", this

Of course, the constructor won't get called unless someone mstanUates the
class, which echoes the problem the Singleton pattern trying to^ol -e.
We can get around this problem in C++ by defining a
MySingleton. For example, we can define

static MySingleton theSingleton;

in the file that contains MySingleton's implementation.

No longer is the Singleton class responsible for ̂ ^^^^hoke accessible
its primary responsibility is to make the sing e

CHAPTER 3
132 CREATIONAL PATTERNS

. i • . still has a potential drawback—
nalVSt~eSsrfCaU possible Singleton subclasses must be oeated, or

umn't p-et registered.

classes, like BombedWall objects instead of plain Wal 1 ob)ects.
What's relevant here is that the Maze application needs only one instance of
Tmaze factory, and that instance should be available to code that builds any
part of the rZe. This is where the Singleton pattern comes in. By making the
MazeFactory a singleton, we make the maze object globally accessible w.thout
resorting to global variables.
For simplicity, let's assume we'll never subclass MazeFactory (We'll consider
the alternative in a moment.) We make it a Singleton class in C++ by adding a static
Instance operation and a static .instance member to hold the one and only
instance. We must also protect the constructor to prevent accidental instantiation,
which might lead to more than one instance.

class MazeFactory {
public:

static MazeFactory* Instance () ;

// existing interface goes here
protected:

MazeFactory();
private:

static MazeFactory* ..instance;
} ;

The corresponding implementation is

MazeFactory* MazeFactory: :_instance = 0;

MazeFactory* MazeFactory::Instance () {
if (..instance ==0) {

..instance = new MazeFactory;
)
return .instance;

}

Now let s consider what happens when there are subclasses of Ma zeFac t ory, and
the application must decide which one to use. We'll select the kind of maze through
an environment variable and add code that instantiates the proper MazeFactory
subclass based on the environment variable's value. The Instance operation is
a good place to put this code, because it already instantiates MazeFactory:

SINGLETON 133

MazeFactory* MazeFactory:: Instance () {
if (.instance = = 0) {

const char* mazeStyle = getenv("MAZESTYLE") ;

if (strcmp(mazeStyle, "bombed") == 0) {
.instance = new BombedMazeFactory;

) else if (strcmp(mazeStyle, "enchanted") == 0) {
.instance = new EnchantedMazeFactory;

// ... other possible subclasses

) else (// default
.instance = new MazeFactory;

)
)
return .instance;

}

Note that Instance must be modified whenever you define a new subclass of
MazeFactory. That might not be a problem in this application, but it might be
for abstract factories defined in a framework.

A possible solution would be to use the registry approach described in the Imple­
mentation section. Dynamic linking could be useful here as well—it would keep
the application from having to load all the subclasses that are not used.

Cnown Uses
An example of the Singleton pattern in Smalltalk-80 [Par90] is the set of changes to
the code, which is ChangeSet current. A more subtle example is the relation­
ship between classes and their metaclasses. A metaclass is the class of a class, and
each metaclass has one instance. Metaclasses do not have names (except indirectly
through their sole instance), but they keep track of their sole instance and will no
normally create another.
The Interviews user interface toolkit [LCI+92] uses the Singleton pattern to access
the unique instance of its Session and WidgetKit classes, among ^rs. Ses^on
defines the application's main event dispatch loop, stores t e user s . ,
stylistic preferences, and manages connections to eme,or :more piayŝ £0% ̂
WidgetKit is an Abstract Factory (87) for defining the look and feel c>f

widgets. The WidgetKit: : instance () operation determines to^ P^a

WidgetKit subclass that's instantiated based on an environment ™^bl^hat
Sessfon defines. A similar operation on Session determines whethe
or color displays am supported and configures the singleton Session
accordingly.

134

CHAPTER 3
CREATIONAL PATTERNS

Related Patterns Singleton pattern. See Abstract

DISCUSSION OF CREATION A L PATTERNS 135

Discussion of Creational Patterns

There are two common ways to parameterize a system by the classes of objects it
creates. One way is to subclass the class that creates the objects; this corresponds to
using the Factory Method (107) pattern. The main drawback of this approach is that it
can require creating a new subclass just to change the class of the product. Such changes
can cascade. For example, when the product creator is itself created by a factory method,
then you have to override its creator as well.

The other way to parameterize a system relies more on object composition: Define an
object that's responsible for knowing the class of the product objects, and make it a
parameter of the system. This is a key aspect of the Abstract Factory (87), Builder (97),
and Prototype (117) patterns. All three involve creating a new "factory object" whose
responsibility is to create product objects. Abstract Factory has the factory object pro­
ducing objects of several classes. Builder has the factory object building a complex
product incrementally using a correspondingly complex protocol. Prototype has the
factory object building a product by copying a prototype object. In this case, the factory
object and the prototype are the same object, because the prototype is responsible for
returning the product.

Consider the drawing editor framework described in the Prototype pattern. There are
several ways to parameterize a GraphicTool by the class of product:

• By applying the Factory Method pattern, a subclass of GraphicTool will be created
for each subclass of Graphic in the palette. GraphicTool will have a NewGraphic
operation that each GraphicTool subclass will redefine.

• By applying the Abstract Factory pattern, there will be a class hierarchy of Graph-
icsFactories, one for each Graphic subclass. Each factory creates just one product
in this case: CircleFactory will create Circles, LineFactory will create Lines, and
so on. A GraphicTool will be parameterized with a factory for creating the appro­
priate kind of Graphics.

• By applying the Prototype pattern, each subclass of Graphics will implement the
Clone operation, and a GraphicTool will be parameterized with a prototype of
the Graphic it creates.

Which pattern is best depends on many factors. In our drawing editor framework, the
Factory Method pattern is easiest to use at first. It's easy to define a new subclass of
GraphicTool, and the instances of GraphicTool are created only when the palette is
defined. The main disadvantage here is that GraphicTool subclasses proliferate, and
none of them does very much.

Abstract Factory doesn't offer much of an improvement, because it requires an equally
arge GraphicsFactory class hierarchy. Abstract Factory would be preferable to Factory

ethod only if there were already a GraphicsFactory class hierarchy—either because
1 e compiler provides it automatically (as in Smalltalk or Objective C) or because it's
needed in another part of the system.

_DNrc CHAPTER 3
136 CREATIONAL PATTERNS

• nrobablv the best for the drawing editor framework,
Overall, the Prototype pattern is p a clone operation on each Graphics class. That
because it only requires imple 6 can be used for purposes other than pure
reduces the number o <operation).
instantiation (e.g., a customizable and only a little more complicated.
Factory Method makes a des g whereas Factory Method only requires a new
Other design patterns require ^ ̂ s(andard way to objects,butit
operation. People often us y changes or when instantiation -- —
those that use Factory e . creational pattems as the designer

SSS!lore flexibility is needed. Knowing many design pattems gives you
more choices when trading off one design criterion against another.

