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Chapter 3 

Creational Patterns 

Creational design patterns abstract the instantiation process. They help make a system 
independent of how its objects are created, composed, and represented. A class cre­
ational pattern uses inheritance to vary the class that's instantiated, whereas an object 
creational pattern will delegate instantiation to another object. 

Creational patterns become important as systems evolve to depend more on object 
composition than class inheritance. As that happens, emphasis shifts away from hard-
coding a fixed set of behaviors toward defining a smaller set of fundamental behaviors 
that can be composed into any number of more complex ones. Thus creating objects 
with particular behaviors requires more than simply instantiating a class. 
There am two recurring themes in these patterns. First, they all encapsulate knowledge 
about which concrete classes the system uses. Second, they hide how instances of these 
classes are created and put together. All the system at large knows about the objects is 
their interfaces as defined by abstract classes. Consequently, the creational patterns give 
you a lot of flexibility in what gets created, who creates it, how it gets created, and when. 
They let you configure a system with "product objects that vary widely in structure 
and functionality. Configuration can be static (that is, specified at compile-time) or 
dynamic (at run-time). 
Sometimes creational patterns are competitors. For example, there are cases when either 
Prototype (117) or Abstract Factory (87) could be used profitably. At other times they 
are complementary: Builder (97) can use one of the other patterns to implement which 
components get built. Prototype (117) can use Singleton (127) in its implementation. 

Because the cmational patterns are closely related, we'll study all five of then^Jher 
to highlight their similarities and differences. Well also use a common examp 
bulling a maze for a computer game-to illustrate their 
and the gami' will vary slightly from 
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overcome, and these games may provide a map of the part of the maze that has been 

explored. can be ta a maze and whether a maze game has a 
We-U Ignore many de d weli just focus on how mazes get created. We define 
I m^asTsefof moms. A room 'knows its neighbors; possible neighbors are another 
room, a wall, or a door to another room. 
The classes Room, Door, and Wal 1 define the components of the maze used in all our 
examples We define only the parts of these classes that are important for creating a 
maze We'll ignore players, operations for displaying and wandering around in a maze, 
Tnd other important functionality that isn't relevant to building the maze. 

The following diagram shows the relationships between these classes: 

Each room has four sides. We use an enumeration Di rec t ion in C++ implementations 
to specify the north, south, east, and west sides of a room: 

enum Direction {North, South, East, West); 

The Smalltalk implementations use corresponding symbols to represent these direc-

The class MapSite is the common abstract class for all the components of a maze. 
^ * f example' MapSite defines only one operation, Enter. Its meaning 

vnluru f °n r at >'ou re entering. If you enter a room, then your location changes. If 
the next room^TfH^' ^ °ne °f tWO thin§s haPPen: K the door is open, you go into 
the next room. If the door 1S closed, then you hurt your nose. 

class MapSite { 
public: 

virtual void Enter() = 0 ;  
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.—"j .wuia m me maze. 
class Room : public MapSite { 
public: 

Room(int roomNo); 

MapSite* GetSide(Direction) const; 
void SetSide(Direction, MapSite*); 

virtual void Enter(); 

private: 
MapSite* _sides[4]; 
int _roomNumber; 

} ; 

The following classes represent the wall or door that occurs on each side of a room. 

class Wall : public MapSite { 
public: 

Wall() ; 

virtual void Enter(); 
} ; 

class Door : public MapSite { 
public: 

Door(Room* = 0, Room* = 0); 

virtual void Enter(); 
Room* OtherSideFrom(Room*); 

private: 
Room* _rooml; 
Room* _room2; 
bool _isOpen; 

) ;  

We need to know about more than just the parts of a maze. We'll also define a Maze 
dass to represent a collection of rooms. Maze can also find a particular room given a 
room number using its RoomNo operation. 
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class Maze { 
public: 

Maze(); 

void AddRoom(Room* ) ; 
Room* RoomNo(int) const; 

private: 
I I  . . .  

};  

RoomNo could do a look-up using a Unear search, a hash table, or even a simple array. 
But we won't worry about such details here. Instead, we 11 focus on how to specify the 
components of a maze object. 
Another class we define is MazeGame, which creates the maze. One straightforward 
way to create a maze is with a series of operations that add components to a maze 
and then interconnect them. For example, the following member function will create a 
maze consisting of two rooms with a door between them: 

Maze* MazeGame: :CreateMaze () { 
Maze* aMaze = new Maze, 
Room* rl = new Room(1) 
Room* r2 = new Room(2) 
Door* theDoor = new Door(rl, r2) 

aMaze->AddRoom (rl) ; 
aMaze->AddRoom(r2) ; 

rl->SetSide(North, new Wall); 
rl->SetSide(East, theDoor); 
rl->SetSide(South, new Wall); 
rl->SetSide(West, new Wall); 

r2->SetSide(North, new Wall); 
r2->SetSide(East, new Wall); 
r2->SetSide(South, new Wall); 
r2->SetSide(West, theDoor); 

return aMaze; 
} 

two rooms°Therpretty C°mpllcated' considering that all it does is create a maze 
°brUS,WaySt° make —Pier. For example, the ROOK 

code somewhere eke^n ° SJ with wa^s ahead of time. But that just movt 
inflexibility. It hard-codes^tenTa™^111 WitJ?,.this nu'niht'r function isn't its sizel 
member function either bv ov G , y°Ut- Chan8»ng the layout nu-.ms changin] 
thing or by changing parts ofil—whkrh'i Wh'ch — ..implementing the v 

hich is error-prone and doesn't promote reu 
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The creational patterns show how to malcp u«-e ^ • 
smaller. In particular, they will make it eisv to ^exihle' not necessarily 
components of a maze. 9Sy t0 Chan&e the classes that define the 

Suppose you wanted to reuse an existing maze lavont for * 
all things) enchanted mazes. The enchanted mize 1 ' ^ P?16 contammg (°f 

like DoorNeedingSpel 1, a door thTt can Z ZTT T ^ of comP°^nts, 
with a spell; and EnchantedRoom a room that can have °PG subsequently only 
like magic keys or spells. How can you change 
mazes with these new classes of objects? creates 

IVZa Th*' thefblg8ft barrier to change lies in hard-coding the classes that get instan­
tiated. The creational patterns provide different ways to remove explicit references to 
concrete classes from code that needs to instantiate them: 

• If CreateMaze calls virtual functions instead of constructor calls to create the 
rooms, walls and doors it requires, then you can change the classes that get 
instantiated by making a subclass of MazeGame and redefining those virtual 
functions. This approach is an example of the Factory Method (107) pattern. 

• If CreateMaze is passed an object as a parameter to use to create rooms, walls, 
and doors, then you can change the classes of rooms, walls, and doors by passing 
a different parameter. This is an example of the Abstract Factory (87) pattern. 

• If CreateMaze is passed an object that can create a new maze in its entirety using 
operations for adding rooms, doors, and walls to the maze it builds, then you can 
use inheritance to change parts of the maze or the way the maze is built. This is 
an example of the Builder (97) pattern. 

• If CreateMaze is parameterized by various prototypical room, door, and wall 
objects, which it then copies and adds to the maze, then you can change the 
maze's composition by replacing these prototypical objects with different ones. 
This is an example of the Prototype (117) pattern. 

The remaining creational pattern, Singleton (127), can ensure there's only one maze 
per game and that all game objects have ready access to it—without resorting to global 
variables or functions. Singleton also makes it easy to extend or replace the maze 
without touching existing code. 



ABSTRACT FACTORY 87 

ABSTRACT FACTORY 
Object Creational 

Intent 
Provide an interface for creating families of related or dependent objects without 
specifying their concrete classes. 

Also Known As 
Kit 

Motivation 
Consider a user interface toolkit that supports multiple look-and-feel standards, 
such as Motif and Presentation Manager. Different look-and-feels define different 
appearances and behaviors for user interface "widgets" like scroll bars, windows, 
and buttons. To be portable across look-and-feel standards, an application should 
not hard-code its widgets for a particular look and feel. Instantiating look-and-
feel-specific classes of widgets throughout the application makes it hard to change 
the look and feel later. 

We can solve this problem by defining an abstract WidgetFactory class that de­
clares an interface for creating each basic kind of widget. There's also an abstract 
class for each kind of widget, and concrete subclasses implement widgets for 
specific look-and-feel standards. WidgetFactory's interface has an operation that 
returns a new widget object for each abstract widget class. Clients call these oper­
ations to obtain widget instances, but clients aren't aware of the concrete classes 
they're using. Thus clients stay independent of the prevailing look and feel. 
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f cnhrlass of WidgetFactory for each look-and-feel standard. 
There is a concretfj the operations to create the appropriate widget for the 
Each subclass imp CreateScrollBar operation on the MotifWidgetFac-
,ook and a bar. wM.e ,he corresponding 0fLion 
on^hTpMWidgetFacto^ returns a scroll bar for Presentation Manager. Clients 
creat^ widgets Solely through the WidgetFactory interface and havenoW 
Xe of the classes that implement w.dgets for a ParhculaHook and feel. In other 
words, clients only have to commit to an interface defined by an abstract class, 
not a particular concrete class. 
A WidgetFactory also enforces dependencies between the concrete widget classes. 
A Motif scroll bar should be used with a Motif button and a Motif text editor, and 
that constraint is enforced automatically as a consequence of using a MotifWid-
getFactory. 

Applicability 
Use the Abstract Factory pattern when 

• a system should be independent of how its products are created, composed, 
and represented. 

• a system should be configured with one of multiple families of products. 

• a family of related product objects is designed to be used together, and you 
need to enforce this constraint. 

• you want to provide a class library of products, and you want to reveal just 
their interfaces, not their implementations. 

Structure 
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Participants 
• AbstractFactory (WidgetFactory) 

- declares an interface for operations that create abstract product objects. 
• ConcreteFactory (MotifWidgetFactory, PMWidgetFactory) 

- implements the operations to create concrete product objects. 
• AbstractProduct (Window, ScrollBar) 

- declares an interface for a type of product object. 

• ConcreteProduct (MotifWindow, MotifScrollBar) 

defines a product object to be created by the corresponding concrete factory. 

- implements the AbstractProduct interface. 
• Client 

- uses only interfaces declared by AbstractFactory and AbstractProduct 
classes. 

Collaborations 
• Normally a single instance of a ConcreteFactory class is created at run-time. 

This concrete factory creates product objects having a particular implementa­
tion. To create different product objects, clients should use a different concrete 
factory. 

• AbstractFactory defers creation of product objects to its ConcreteFactory sub­
class. 

Consequences 
The Abstract Factory pattern has the following benefits and liabilities: 

1. It isolates concrete classes. The Abstract Factory pattern helps you control the 
classes of objects that an application creates. Because a factory encapsulates 
the responsibility and the process of creating product objects, it isolates clients 
from implementation classes. Clients manipulate instances through their 
abstract interfaces. Product class names are isolated in the implementation 
of the concrete factory; they do not appear in client code. 

2. It makes exchanging product families easy. The class of a concrete factory appears 
only once in an application—that is, where it's instantiated. This makes it 
easy to change the concrete factory an application uses. It can use different 
product configurations simply by changing the concrete factory. Because an 
abstract factory creates a complete family of products, the whole product 
family changes at once. In our user interface example, we can switch from 
Motif widgets to Presentation Manager widgets simply by switching e 
corresponding factory objects and recreating the interface. 
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3 Tt promotes consistency among products. When product objects ,n a family » 
designed to work together, it's important that an application useot^ecteta 
only one family at a time. AbstractFactory makes this easy to enfoice. 

4 supporting new kinds of products is difficult. Extending abstract factories to 
produce new kinds of Products isn't easy. That's because the AbstractFactory 
interface fixes the set of products that can be created. Supporting new kindsof 
products requires extending the factory interface, which involves changing 
the AbstractFactory class and all of its subclasses. We discuss one solution to 
this problem in the Implementation section. 

Implementation 
Here are some useful techniques for implementing the Abstract Factory pattern. 

1. Factories as singletons. An application typically needs only one instance of a 
ConcreteFactory per product family. So it's usually best implemented as a 
Singleton (127). 

2. Creating the products. AbstractFactory only declares an interface for creating 
products. It's up to ConcreteProduct subclasses to actually create them. The 
most common way to do this is to define a factory method (see Factory 
Method (107)) for each product. A concrete factory will specify its products 
by overriding the factory method for each. While this implementation is 
simple, it requires a new concrete factory subclass for each product family, 
even if the product families differ only slightly. 
If many product families are possible, the concrete factory can be imple­
mented using the Prototype (117) pattern. The concrete factory is initialised 
with a prototypical instance of each product in the family, and itcreatesanew 
product by cloning its prototype. The Prototype-based approach eliminates 
the need for a new concrete factory class for each new product family. 
Here s a way to implement a Prototype-based factory in Smalltalk. The 
concrete factory stores the prototypes to be cloned in a dictionary called 
part Cat a log. The method make : retrieves the prototype and clones it: 

make: partName 
(partCatalog at: partName) copy 

The concrete factory has a method for adding parts to the catalog. 

addpart partTemp late named: partName 
atal°9 at:  PartName put: partTemplate 

Prototypes are added to the factory by identifying them with a symbol: 

Factory addPart: aPrototype named: •ACMEWidget 

treat classes asVrst I!rototyPe"baseci approach is possible in languages J* 
asses as first-class objects (Smalltalk and ObjectiveC, for example)- You 
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of language characteristics, whereas the 
language-independent. 

Like the Prototype-based factory in Smalltalk just discussed, the class-based 
version will have a single instance variable partCatalog, which is a dictio­
nary whose key is the name of the part. Instead of storing prototypes to be 
cloned, par tCatalog stores the classes of the products. The method make: 

3. Defining extensible factories. AbstractFactory usually defines a different op­
eration for each kind of product it can produce. The kinds of products are 
encoded in the operation signatures. Adding a new kind of product requires 
changing the AbstractFactory interface and all the classes that depend on it. 
A more flexible but less safe design is to add a parameter to operations that 
create objects. This parameter specifies the kind of object to be created. It 
could be a class identifier, an integer, a string, or anything else that identifies 
the kind of product. In fact with this approach, AbstractFactory only needs 
a single "Make" operation with a parameter indicating the kind of object 
to create. This is the technique used in the Prototype- and the class-based 
abstract factories discussed earlier. 
This variation is easier to use in a dynamically typed language like Smalltalk 
than in a statically typed language like C++. You can use it in C++ only when 
all objects have the same abstract base class or when the product objects can 
be safely coerced to the correct type by the client that requested them. The 
implementation section of Factory Method (107) shows how to implement 
such parameterized operations in C++. 
But even when no coercion is needed, an inherent problem remains: All 
products are returned to the client with the same abstract interface as given 
by the return type. The client will not be able to differentiate or make safe 
assumptions about the class of a product. If clients need to perform subclass-
specific operations, they won't be accessible through the abstract interface. 
Although the client could perform a downcast (e.g., with dynamic cast in 
C++), that's not always feasible or safe, because the downcast can fail. This 
is the classic trade-off for a highly flexible and extensible interface. 

now looks like this: 

make: partName 
(partCatalog at: partName) new 
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Sample Code 
We'll apply the Abstract Factory pattern to creating the mazes we discussed at the 
beginning of this chapter. 
Class MazeFactory can create components of mazes. It builds rooms, walls, and 
doors between rooms. It might be used by a program that reads plans for mazes 
from a file and builds the corresponding maze. Or it might be used by a program 
that builds mazes randomly. Programs that build mazes take a MazeFactory as 
an argument so that the programmer can specify the classes of rooms, walls, and 
doors to construct. 

class MazeFactory { 
public: 

MazeFactory () ; 

virtual Maze* MakeMazeO const 
{ return new Maze; } 

virtual Wall* MakeWallO const 
{ return new Wall; } 

virtual Room* MakeRoom(int n) const 
{ return new Room(n); } 

virtual Door* MakeDoor(Room* rl, Room* r2) const 
{ return new Doorfrl, r2); ) 

} ; 

Recall that the member function CreateMaze (page 84) builds a small maze 
consisting of two rooms with a door between them. CreateMaze hard-codes the 
class names, making it difficult to create mazes with different components. 

Here's a version of CreateMaze that remedies that shortcoming by taking a 
MazeFactory as a parameter: 

Maze* MazeGame: :CreateMaze (MazeFactoryS. factory) { 
Maze* aMaze = factory.MakeMaze(); 
Room* rl = factory.MakeRoom(1); 
Room* r2 = factory.MakeRoom(2); 
Door* aDoor = factory.MakeDoor(rl, r2); 

aMaze->AddRoom(rl); 
aMaze->AddRoom(r2); 

rl >SetSide(North, factory.MakeWall ()) ; 
rl->SetSide(East, aDoor); 

rl->SetSidp fw°Uth' ^actorV•MakeWall(1 ) , 
>SetSide(West, factory.MakeWal1 () ) ; 
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r2->SetSide(North, factory.MakeWall()); 
r2->SetSide(East, factory.MakeWall() ) ; 
r2->SetSide(South, factory.MakeWall())• 
r2->SetSide(West, aDoor); 

return aMaze; 
} 

We can create EnchantedMazeFactory, a factory for enchanted mazes, by sub­
classing MazeFactory. EnchantedMazeFactory will override different mem­
ber functions and return different subclasses of Room, Wall, etc. 

class EnchantedMazeFactory : public MazeFactory { 
public: 

EnchantedMazeFactory(); 

virtual Room* MakeRoom(int n) const 
{ return new EnchantedRoom(n, CastSpell() ) ; } 

virtual Door* MakeDoor(Room* rl, Room* r2) const 
{ return new DoorNeedingSpell(rl, r2); } 

protected: 
Spell* CastSpell() const; 

) ; 

Now suppose we want to make a maze game in which a room can have a bomb 
set in it. If the bomb goes off, it will damage the walls (at least). We can make a 
subclass of Room keep track of whether the room has a bomb in it and whether the 
bomb has gone off. We'll also need a subclass of Wall to keep track of the damage 
done to the wall. We'll call these classes RoomWithABomb and BombedWall. 

The last class we'll define is BombedMazeFactory, a subclass of MazeFactory 
that ensures walls are of class BombedWall and rooms are of class 
RoomWithABomb. BombedMazeFactory only needs to override two functions: 

Wall* BombedMazeFactory::MakeWall () const { 
return new BombedWall; 

) 

Room* BombedMazeFactory::MakeRoom(int n) const { 
return new RoomWithABomb(n); 

) 

To build a simple maze that can contain bombs, we simply call Creat eMaze with 
a BombedMazeFactory. 

MazeGame game; 
BombedMazeFactory factory; 

game.CreateMaze(factory); 
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CreateMaze can take an instance of EnchantedMazeFactory ,ust as well to 

build enchanted mazes. 
Notice that the MazeFactory is just a collection of factory methods. This is the 
most common way to implement the Abstract Factory pattern. Also note that 
MazeFactory is not an abstract class; thus it acts as both the AbstractFactoryand 
the ConcreteFactory. This is another common implementation for simple applica­
tions of the Abstract Factory pattern. Because the MazeFactory is a concrete class 
consisting entirely of factory methods, it's easy to make a new MazeFactory by 
making a subclass and overriding the operations that need to change. 

CreateMaze used the Set Side operation on rooms to specify their sides. If it 
creates rooms with a BombedMazeFactory, then the maze will be made up of 
RoomWithABomb objects with BombedWall sides. If RoomWithABomb had to 
access a subclass-specific member of BombedWal 1, then it would have to cast a 
reference to its walls from Wa 11 * to BombedWa 11*. This downcasting is safe as 
long as the argument is in fact a BombedWa 11, which is guaranteed to be true if 
walls are built solely with a BombedMazeFactory. 

Dynamically typed languages such as Smalltalk don't require downcasting, of 
course, but they might produce run-time errors if they encounter a Wall where 
they expect a subclass of Wal 1. Using Abstract Factory to build walls helps prevent 
these run-time errors by ensuring that only certain kinds of walls can be created. 

Let's consider a Smalltalk version of MazeFactory, one with a single make 
operation that takes the kind of object to make as a parameter. Moreover, the 
concrete factory stores the classes of the products it creates. 

First, we'll write an equivalent of CreateMaze in Smalltalk: 

CreateMaze: aFactory 
I rooml room2 aDoor I 
rooml = (aFactory make: »room) number: 1. 
room2 = (aFactory make: iroom) n u m b e r :  2 .  
aDoor = (aFactory make: #door) f r o m :  r o o m l  t o :  r o o m 2 .  
rooml atside: #north put: (aFactory m a k e :  ( ( w a l l ) .  

#east put: aDoor. 
(•south put: (aFactory m a k e :  # w a l l ) .  
#west put: (aFactory m a k e :  ( ( w a l l ) .  
#north put: (aFactory m a k e :  t w a l l )  .  
((east put: (aFactory m a k e :  ( I w a l l ) .  
((south put: (aFactory m a k e :  ( ( w a l l ) .  
((west put: aDoor. 

rooml atside 
rooml atside 
rooml atside 
room2 atSide 
room2 atside 
room2 atside 
room2 atSide 
Maze new addRoom: rl; addRoom: r2; yourself 

instance variabf ^ ImPlernentation section, Ma zeFact ory needs only a sir 
the component e.^ar tCatal°g to provide a dictionary whose key is the das: 

component. Also recall how we implemented the make: method: 

make: partName 

(partCatalog at: partName) new 
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Now we can create a MazeFactory and use it to implement createMaze. We'll 
create the factory usmg a method createMazeFac tory of class MazeGame. 

createMazeFactory 
(MazeFactory new 
addPart: Wall named: #wall; 
addPart: Room named: #room; 
addPart: Door named: #door; 
yourself) 

A BombedMazeFactory or EnchantedMazeFactory is created by associating 
different classes with the keys. For example, an EnchantedMazeFactory could 
be created like this: 

createMazeFactory 
(MazeFactory new 
addPart: Wall named: #wall; 
addPart: EnchantedRoom named: #room; 
addPart: DoorNeedingSpell named: #door; 
yourself) 

Known Uses 
Interviews uses the "Kit" suffix [Lin92] to denote AbstractFactory classes. It de­
fines WidgetKit and DialogKit abstract factories for generating look-and-feel-
specific user interface objects. Interviews also includes a LayoutKit that generates 
different composition objects depending on the layout desired. For example, a 
layout that is conceptually horizontal may require different composition objects 
depending on the document's orientation (portrait or landscape). 
ET++ [WGM88] uses the Abstract Factory pattern to achieve portability across 
different window systems (X Windows and SunView, for example). The Win-
dowSystem abstract base class defines the interface for creating objects that repre­
sent window system resources (MakeWindow, MakeFont, MakeColor, for exam­
ple). Concrete subclasses implement the interfaces for a specific window system. 
At run-time, ET++ creates an instance of a concrete WindowSystem subclass that 
creates concrete system resource objects. 

Related Patterns 
AbstractFactory classes are often implemented with factory methods (Factory 
Method (107)), but they can also be implemented using Prototype (117). 

A concrete factory is often a singleton (Singleton (127)). 
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BUILDER Object Creational 

Intent 
Separate the construction of a complex object from its representation so that the 
same construction process can create different representations. 

Motivation 
A reader for the RTF (Rich Text Format) document exchange format should be able 
to convert RTF to many text formats. The reader might convert RTF documents 
into plain ASCII text or into a text widget that can be edited interactively. The 
problem, however, is that the number of possible conversions is open-ended. So 
it should be easy to add a new conversion without modifying the reader. 

A solution is to configure the RTFReader class with a TextConverter object that 
converts RTF to another textual representation. As the RTFReader parses the RTF 
document, it uses the TextConverter to perform the conversion. Whenever the 
RTFReader recognizes an RTF token (either plain text or an RTF control word), it 
issues a request to the TextConverter to convert the token. TextConverter objects 
are responsible both for performing the data conversion and for representing the 
token in a particular format. 

Subclasses of TextConverter specialize in different conversions and formats. For 
example, an ASCIIConverter ignores requests to convert anything except plain 
text. A TeXConverter, on the other hand, will implement operations for all requests 
in order to produce a TpX representation that captures all the stylistic information 
in the text. A TextWidgetConverter will produce a complex user interface object 
that lets the user see and edit the text. 

Par»eRTF() 9 

I (I • 8* me next token) ( 
•witch t Type) 
CHAR 

builder->ConvertCharacter(t Char) 
FONT 

butder-»Conv#rtFontChanoe(t Font) 
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ConvertCharacter(char) 
ConvertFontChange(Font) 
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ConvertFontChange(Font) 
ConvertParagraph() 
GetTextWidgetO 
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Fach kind of converter class takes the mechanism for creating and assembling a 
complex object and puts it behind an abstract interface. The converter is separate 
from the reader, which is responsible for parsing an RTF document. 

The Builder pattern captures all these relationships. Each converter class is called 
a builder in the pattern, and the reader is called the director. Applied to this 
example the Builder pattern separates the algorithm for interpreting a textual 
format (that is, the parser for RTF documents) from how a converted format gets 
created and represented. This lets us reuse the RTFReader's parsing algorithm 
to create different text representations from RTF documents—just configure the 
RTFReader with different subclasses of TextConverter. 

Applicability 
Use the Builder pattern when 

• the algorithm for creating a complex object should be independent of the 
parts that make up the object and how they're assembled. 

• the construction process must allow different representations for the object 
that's constructed. 

Structure 

Participants 
• Builder (TextConverter) 

- specifies an abstract interface for creating parts of a Product object. 
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. ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter) 

iTerfacT ̂  aSSembleS partS °f the Product by implementing the Builder 

- defines and keeps track of the representation it creates. 

provides an interface for retrieving the product (e.g., GetASCIIText, Get-

• Director (RTFReader) 

- constructs an object using the Builder interface. 

• Product (ASCIIText, TeXText, TextWidget) 

- represents the complex object under construction. ConcreteBuilder builds 
the product's internal representation and defines the process by which it's 
assembled. 

- includes classes that define the constituent parts, including interfaces for 
assembling the parts into the final result. 

Collaborations 
• The client creates the Director object and configures it with the desired Builder 

object. 
• Director notifies the builder whenever a part of the product should be built. 
• Builder handles requests from the director and adds parts to the product. 
• The client retrieves the product from the builder. 

The following interaction diagram illustrates how Builder and Director cooperate 
with a client. 

TextWidget). 

aClient 

X 

aDi rector aConcreteBuilder 

BuildPartBO X 

BuildPartC() X 
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Consequences 
Here are key consequences of the Builder pattern: 

1 It lets you vary a product's internal representation. The Builder object provides 
the director with an abstract interface for constructing the product. The in­
terface lets the builder hide the representation and internal structure of the 
product. It also hides how the product gets assembled. Because the product 
is constructed through an abstract interface, all you have to do to change the 
product's internal representation is define a new kind of builder. 

2. It isolates code for construction and representation. The Builder pattern improves 
modularity by encapsulating the way a complex object is constructed and 
represented. Clients needn't know anything about the classes that define the 
product's internal structure; such classes don't appear in Builder's interface. 
Each ConcreteBuilder contains all the code to create and assemble a partic­
ular kind of product. The code is written once; then different Directors can 
reuse it to build Product variants from the same set of parts. In the earlier 
RTF example, we could define a reader for a format other than RTF, say, 
an SGMLReader, and use the same TextConverters to generate ASCIIText, 
TeXText, and TextWidget renditions of SGML documents. 

3. It gives you finer control over the construction process. Unlike creational pat­
terns that construct products in one shot, the Builder pattern constructs the 
product step by step under the director's control. Only when the product 
is finished does the director retrieve it from the builder. Hence the Builder 
interface reflects the process of constructing the product more than other cre­
ational patterns. This gives you finer control over the construction process 
and consequently the internal structure of the resulting product. 

Implementation 
Ty pically there s an abstract Builder class that defines an operation for each com­
ponent t at a director may ask it to create. The operations do nothing by default, 
creating^ overrides operations for components it's interested in 

Here are other implementation issues to consider: 

bv-^r! f "'u- Conf!^uction interface. Builders construct their products in step-
to allow fh °n erefore the Builder class interface must be general enough 

he construction of products for all kinds of concrete builders. 

process concerns the model for the construction and assembly 
pended to thp G ^ results construction requests are simply ap-
converts and I™ ? u usually sufficient. In the RTF example, the builder 
But so f • Ppends the next tC)ken to the text it has converted so far. 
earlier. IntheMaT^ need access to parts of the product constructed 

< e example we present in the Sample Code, the MazeBuilder 
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interface lets you add a door between existing rooms. Tree structures such 
as parse trees that are built bottom-up are another example. !ntha case 
he builder would return child nodes to the director, which then would pass 

them back to the builder to build the parent nodes. 

2. Why no abstract class for products? In the common case, the products produced 
• VJ COncrete builders differ so greatly in their representation that there 
J? gain, 8lvln8 dlfferent products a common parent class. In 
the RTF example, the ASCIIText and the TextWidget objects are unlikely to 
have a common interface, nor do they need one. Because the client usually 
configures the director with the proper concrete builder, the client is in a 
position to know which concrete subclass of Builder is in use and can handle 
its products accordingly. 

3. Empty methods as default in Builder. In C++, the build methods are intention­
ally not declared pure virtual member functions. They're defined as empty 
methods instead, letting clients override only the operations they're inter­
ested in. 

Sample Code 
We'll define a variant of the CreateMaze member function (page 84) that takes a 
builder of class MazeBuilder as an argument. 

The MazeBui lder class defines the following interface for building mazes: 

class MazeBuilder { 
public: 

virtual void BuildMazeO { } 
virtual void BuildRoom(int room) { } 
virtual void BuildDoor(int roomFrom, int roomTo) { } 

virtual Maze* GetMazeO { return 0; } 
protected: 

MazeBuilder(); 
) ;  

This interface can create three things: (1) the maze, (2) rooms with a particular 
room number, and (3) doors between numbered rooms. The GetMaze operation 
returns the maze to the client. Subclasses of MazeBuilder will override this 
operation to return the maze that they build. 
All the maze-building operations of MazeBuilder do nothing by default. They re 
not declared pure virtual to let derived classes override only those methods in 
which they're interested. 
Given the MazeBuilder interface, we can change the CreateMaze member 
function to take this builder as a parameter. 
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Maze' MazeGame: :CreateMaze (MazeBui ldert builderl ( 
builder.BuildMazeO ; 

builder.BuildRoom(1); 
builder.BuildRoom(2); 
builder.BuildDoor(1, 2); 

return builder.GetMaze(); 

} 

Compare this version of CreateMaze with the original. Notice how the builder 
hides the internal representation of the Maze—that is, the classes that define 
rooms, doors, and walls—and how these parts are assembled to complete the 
final maze. Someone might guess that there are classes for representing rooms 
and doors, but there is no hint of one for walls. This makes it easier to change the 
way a maze is represented, since none of the clients of MazeBu i 1 der has to be 
changed. 
Like the other creational patterns, the Builder pattern encapsulates how ob­
jects get created, in this case through the interface defined by MazeBuilder. 
That means we can reuse MazeBui lder to build different kinds of mazes. The 
CreateComplexMaze operation gives an example: 

Maze* MazeGame ::CreateComplexMaze (MazeBui lderi builder) ( 
builder.BuildRoom(1) ; 
I I . . .  
builder.BuildRoom(1001); 

return builder.GetMaze(); 
} 

Note that MazeBuilder does not create mazes itself; its main purpose is just tc 
define an mterface for creating mazes. It defines empty implementations primarih 
for convenience. Subclasses of MazeBui lder do the actual work. 

The subclass StandardMazeBuilder is an implementation that builds simple 
mazes, t keeps track of the maze it's building in the variable .currentMaze. 

piblicStandardMaZeBUilder  :  publ ic  MazeBuilder { 

StandardMazeBuilder(); 

virtual void BuildMazeO; 
virtual void BuildRoom(int); 
virtual void BuildDoor(int, int); 

privlie:1"11 MaZe* 

Size^r Comm°"WaU(Room*, Room*I ; 
}< Maze —CurrentMaze; 
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3ES tl , l " "  -  ~  
The StandardMazeBuilder constructor simply initializes _ currentMaze. 

StandardMazeBuilder::StandardMazeBuilder () { 
_currentMaze = 0; 

} 

BuildMaze instantiates a Maze that other operations will assemble and eventu-
ally return to the client (with GetMaze). 

void StandardMazeBuilder: .-BuildMaze () { 
_currentMaze = new Maze; 

} 

Maze 'StandardMazeBuilder::GetMaze () { 
Maze* maze = _currentMaze; 
return maze; 

) 

The BuildRoom operation creates a room and builds the walls around it: 

void StandardMazeBuilder::BuildRoom (int n) { 
if (!_currentMaze->RoomNo(n)) { 

Room* room = new Room(n); 
_currentMaze->AddRoom(room); 

room->SetSide(North, new Wall); 
room->SetSide(South, new Wall); 
room->SetSide(East, new Wall); 
room->SetSide(West, new Wall); 

) 
) 

To build a door between two rooms, StandardMazeBuilder looks up both 
rooms in the maze and finds their adjoining wall: 

void StandardMazeBuilder: : BuildDoor (int nl, int n2 ) { 
Room* rl = _currentMaze->RoomNo(nl); 
Room* r2 = _currentMaze->RoomNo(n2); 
Door* d = new Door(rl, r2); 

rl->SetSide(CommonWall(rl,r2), d); 
r2->SetSide(CommonWall(r2, rl) , d) ; 

> 

Clients can now use CreateMaze in conjunction with StandardMazeBui lder 
to create a maze: 
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Maze* maze; 
MazeGame game; 
StandardMazeBuilder builder; 

game.CreateMaze(builder); 
maze = builder.GetMaze(); 

We could have put all the StandardMazeBui lder operations in Maze and let 
each Maze build itself. But making Maze smaller makes it easier to understand 
and modify, and StandardMazeBuilder is easy to separate from Maze. Most 
importantly, separating the two lets you have a variety of MazeBuilders,each 
using different classes for rooms, walls, and doors. 
A more exotic MazeBuilder is Count ingMazeBui lder. This builder doesn't 
create a maze at all; it just counts the different kinds of components that would 
have been created. 

class CountingMazeBuilder : public MazeBuilder ( 
public: 

CountingMazeBuilder(); 

virtual void BuildMazeO; 
virtual void BuildRoom(int); 
virtual void BuildDoor(int, int); 
virtual void AddWallfint, Direction); 

void GetCounts(int&, int&) const; 
private: 

int _doors; 
int _rooms; 

} ; 

The constructor initializes the counters, and the overridden MazeBuilder oper­
ations increment them accordingly. 

CountingMazeBuilder: :CountingMazeBuilder {) ( 
—rooms = _doors = 0• 

} 

void CountingMazeBuilder::BuildRoom (int) ( 
_rooms++; 

} 

V°it5_doors++^MaZeBUilder 11 BuildDoor (int. int) ( 
} 

void 
iS°™""?MazeEuilder; :GetCounts ( 
int& rooms, int& doors 

) const { 
rooms = _rooms; 

} doors = -doors; 
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Here's how a client might use a Count ingMazeBuilder: 

int rooms, doors; 
MazeGame game; 
CountingMazeBuilder builder; 

game.CreateMaze(builder); 
builder.GetCounts(rooms, doors) ; 

cout << "The maze has " 
<< rooms << " rooms and " 
« doors << " doors" « endl; 

Known Uses 
The RTF converter application is from ET++ [WGM88], Its text building block 
uses a builder to process text stored in the RTF format. 

Builder is a common pattern in Smalltalk-80 [Par90]: 

• The Parser class in the compiler subsystem is a Director that takes a Pro-
gramNodeBuilder object as an argument. A Parser object notifies its Pro-
gramNodeBuilder object each time it recognizes a syntactic construct. When 
the parser is done, it asks the builder for the parse tree it built and returns it 
to the client. 

• ClassBuilder is a builder that Classes use to create subclasses for themselves. 
In this case a Class is both the Director and the Product. 

• ByteCodeStream is a builder that creates a compiled method as a byte ar­
ray. ByteCodeStream is a nonstandard use of the Builder pattern, because 
the complex object it builds is encoded as a byte array, not as a normal 
Smalltalk object. But the interface to ByteCodeStream is typical of a builder, 
and it would be easy to replace ByteCodeStream with a different class that 
represented programs as a composite object. 

The Service Configurator framework from the Adaptive Communications Envi­
ronment uses a builder to construct network service components that are linked 
into a server at run-time [SS94]. The components are described with a config­
uration language that's parsed by an LALR(l) parser. The semantic actions of 
the parser perform operations on the builder that add information to the service 
component. In this case, the parser is the Director. 

Related Patterns 
Abstract Factory (87) is similar to Builder in that it too may construct complex 
objects. The primary difference is that the Builder pattern focuses on constructing a 
complex object step by step. Abstract Factory's emphasis is on families of product 
objects (either simple or complex). Builder returns the product as a final step, 
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but as far as the Abstract Factory pattern is concerned, the product gets .turned 

immediately. 
A Composite (163) is what the builder often builds. 
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FACTORY METHOD a.o«tal 

Intent 
Define an interface for creating an object, but let subclasses decide which class to 
instantiate. Factory Method lets a class defer instantiation to subclasses. 

Also Known As 
Virtual Constructor 

Motivation 
Frameworks use abstract classes to define and maintain relationships between 
objects. A framework is often responsible for creating these objects as well. 

Consider a framework for applications that can present multiple documents to 
the user. Two key abstractions in this framework are the classes Application and 
Document. Both classes are abstract, and clients have to subclass them to realize 
their application-specific implementations. To create a drawing application, for 
example, we define the classes DrawingApplication and DrawingDocument. The 
Application class is responsible for managing Documents and will create them as 
required—when the user selects Open or New from a menu, for example. 

Because the particular Document subclass to instantiate is application-specific, the 
Application class can't predict the subclass of Document to instantiate—the Ap­
plication class only knows when a new document should be created, not what kind 
of Document to create. This creates a dilemma: The framework must instantiate 
classes, but it only knows about abstract classes, which it cannot instantiate. 

The Factory Method pattern offers a solution. It encapsulates the knowledge 
of which Document subclass to create and moves this knowledge out of the 
framework. 
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an abstract CreateDocument operation on Appli-
AppUcation subclasses re Document subclass. Once an Application sub-
cation to return the app P instantiate application-specific Documents with-

out' knovvingDtheir dass. We c a l l  CreateDocument a factory method because if, 
responsible for "manufacturing" an object. 

Applicability 
Use the Factory Method pattern when 

. a class can't anticipate the class of objects it must create. 

• a class wants its subclasses to specify the objects it creates. 

• classes delegate responsibility to one of several helper subclasses, and you 
want to localize the knowledge of which helper subclass is the delegate. 

Structure 

Participants 
• Product (Document) 

- defines the interface of objects the factory method creates. 

• ConcreteProduct (MyDocument) 

- implements the Product interface. 

• Creator (Application) 

declares the factory method, which returns an object of type Product. Cre-
a or may also define a default implementation of the factory method that 
returns a default ConcreteProduct object. 

may call the factory method to create a Product object. 
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• ConcreteCreator (MyApplication) 

- overrides the factory method to return an instance of a ConcreteProduct. 

Collaborations 
• Creator relies on its subclasses to define the factory method so that it returns 

an instance ot the appropriate ConcreteProduct. 

Consequences 
Factory methods eliminate the need to bind application-specific classes into your 
code. The code only deals with the Product interface; therefore it can work with 
any user-defined ConcreteProduct classes. 

A potential disadvantage of factory methods is that clients might have to subclass 
the Creator class just to create a particular ConcreteProduct object. Subclassing is 
fine when the client has to subclass the Creator class anyway, but otherwise the 
client now must deal with another point of evolution. 

Here are two additional consequences of the Factory Method pattern: 

1. Provides funks for subclasses. Creating objects inside a class with a factory 
method is always more flexible than creating an object directly. Factory 
Method gives subclasses a hook for providing an extended version of an 
object. 
In the Document example, the Document class could define a factory method 
called CreateFileDialog that creates a default file dialog object for opening an 
existing document. A Document subclass can define an application-specific 
file dialog by overriding this factory method. In this case the factory method 
is not abstract but provides a reasonable default implementation. 

2. Connects parallel class hierarchies. In the examples we've considered so far, the 
factory method is only called by Creators. But this doesn't have to be the 
case; clients can find factory methods useful, especially in the case of parallel 
class hierarchies. 
Parallel class hierarchies result when a class delegates some of its responsibi -
ities to a separate class. Consider graphical figures that can be manipulated 
interactively; that is, they can be stretched, moved, or rotatedInsmgfa 
mouse. Implementing such interactions isn't always <;asy.I: often ̂  
storing and updating information that records the state o therefore 
at a given time. This state is needed only durmg 
it needn't be kept in the figure object. Moreover, thtferent^ 
differently when the user manipulates them, or ex p , stretchin a text 

figure might have the effect of moving an endpoin , 
figure may change its line spacing. ohiprt that 
With these constraints, it's better to use a ip^"ion_specificstate 
implements the interaction and keeps track of any manipulation p 
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. fitnires win use different Manipulator subclasses to 
that's needed. Different gu resulting Manipulator class hierarchy 
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The Figure class provides a CreateManipulator factory method that lets 
clients create a Figure's corresponding Manipulator. Figure subclasses over­
ride this method to return an instance of the Manipulator subclass that sright 
for them. Alternatively, the Figure class may implement CreateManipulator 
to return a default Manipulator instance, and Figure subclasses may simply 
inherit that default. The Figure classes that do so need no corresponding 
Manipulator subclass—hence the hierarchies are only partially parallel. 
Notice how the factory method defines the connection between the two class 
hierarchies. It localizes knowledge of which classes belong together. 

Implementation 
Consider the following issues when applying the Factory Method pattern: 

1. Two major varieties. The two main variations of the Factory Method pattern are 
(1) the case when the Creator class is an abstract class and does not provide 
an implementation for the factory method it declares, and (2) the case when 
the Creator is a concrete class and provides a default implementation for 
the factory method. It's also possible to have an abstract class that defines a 
default implementation, but this is less common. 
The first case requires subclasses to define an implementation, because there's 
no reasonable default. It gets around the dilemma of having to instantiate 
unforeseeable classes. In the second case, the concrete Creator uses the fac­
tory method primarily for flexibility. It's following a rule that says, "Create 
o jects in a separate operation so that subclasses can override the way they re 
create . This rule ensures that designers of subi lasses ian change the class 
of objects their parent class instantiates if necessary. 

f^rametenzed factory methods. Another variation on the pattern ldt the fae­
ry me o create multiple kinds of products. The factory method takes a 
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parameter that identifies the kind of object to creafP All . .u r 

m e t h o d  c r e a t e s  w i l l  s h a r e  t h e  P r o d u c t  i n t e r f a c e  I n  HIP n ^  
Application might support different 
Document an extra parameter to specify the kind of document to create. 
The Umdraw graphical editing framework [VL90] uses this approach for 
reconstruct.ng objects saved on disk. Unidraw defines a Creator claTs witha 
factory method c rea t e that takes a class identifier as an argument Tteclass 
identifier specifies the class to instantiate. When Unidraw saves an object to 
disk, it writes out the class identifier first and then its instance variables 
When it reconstructs the object from disk, it reads the class identifier first. 
Once the class identifier is read, the framework calls Create, passing the 
identifier as the parameter. Create looks up the constructor for the corre­
sponding class and uses it to instantiate the object. Last, Create calls the 
object's Read operation, which reads the remaining information on the disk 
and initializes the object's instance variables. 
A parameterized factory method has the following general form, where 
MyProduct and YourProduct are subclasses of Product: 

class Creator { 
public: 

virtual Product* Create(Productld) ; 
) ;  

Product* Creator::Create (Productld id) { 
if (id = = MINE) return new MyProduct; 
if (id == YOURS) return new YourProduct; 
// repeat for remaining products... 

return 0; 
) 

Overriding a parameterized factory method lets you easily and selectively 
extend or change the products that a Creator produces. You can introduce 
new identifiers for new kinds of products, or you can associate existing 
identifiers with different products. 
For example, a subclass MyCreator could swap MyProduct and YourProd­
uct and support a new TheirProduct subclass: 

Product* MyCreator::Create (Productld id) { 
if (id == YOURS) return new MyProduct; 
if (id == MINE) return new YourProduct; 

// N.B.: switched YOURS and MINE 

if (id == THEIRS) return new TheirProduct; 

4- / n \ • // CrlllGCl if Si 1 O til© ITS f SI 1 
return Creator::Create(id), 

Notice that the last thing this opecat.ondo^ iscall Create on ^parent 
class. That's because MyCreator: : Create handle y 
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t ciass. it isn't interested in other classes. 
THEIRS differently than the pa ^ produc(s created, and it defere re-
Hence MyCreator aetata ^ few ducts to its parent. 

, rSS-Sssssr "nd 
other interesting v ^ method that returns the class of the object 
Smalltalk program!5 °fte factory method can use this value to create 
to be instantiated. A store or even compute this value. rs :".v.rr„fss8 z* . » <  < * » « — « . » s  

instantiated. DoCument example can define a documentClass 
A Smalltalk versio ^^ ̂  documentClass method returns the 
pmpe°r Do°cumePnt class for instantiating documents. The implementation of 
SoStcTass in MVAPP1 icat ion returns the My Document class. Thus 
in class Application we have 

clientMethod 
document := self documentClass new. 

documentClass 
self subclassResponsibility 

In class My Application we have 

documentClass 
~ MyDocument. 

which returns the class My Document to be instantiated to Appl icat ion. 
An even more flexible approach akin to parameterized factory methods is to 
store the class to be created as a class variable of Appl icat .on. That way 
you don't have to subclass Appl icat ion to vary the product. 
Factory methods in C++ are always virtual functions and are often pure vir­
tual. Just be careful not to call factory methods in the Creator's constructor— 
the factory method in the ConcreteCreator won't be available yet. 
You can avoid this by being careful to access products solely through acces­
sor operations that create the product on demand. Instead of creating the 
concrete product in the constructor, the constructor merely initializes it toO. 
The accessor returns the product. But first it checks to make sure the product 
exists, and if it doesn't, the accessor creates it. This technique is sometimes 
called lazy initialization. The following code shows a typical implementa-
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class Creator { 
public: 

Product* Get Product(); 
protected: 

virtual Product* CreateProduct)); 
private: 

Product* .product; 
};  

Product* Creator::GetProduct () { 
if (_product ==0) { 

.product = CreateProduct() ; 
} 
return .product; 

) 

4. Using templates to avoid subclassing. As we've mentioned, another potential 
problem with factory methods is that they might force you to subclass just 
to create the appropriate Product objects. Another way to get around this in 
C++ is to provide a template subclass of Creator that's parameterized by the 
Product class: 

class Creator { 
public: 

virtual Product* CreateProduct() = 0; 
> ;  
template <class TheProduct> 
class StandardCreator: public Creator { 
public: 

virtual Product* CreateProduct)); 
) ;  

template <class TheProduct> 
Product* standardCreator<TheProduct>::CreateProduct () { 

return new TheProduct; 
} 

With this template, the client supplies just the product class—no subclassing 
of Creator is required. 

class MyProduct : public Product { 
public: 

MyProduct(); 
// ... 

} ;  

StandardCreator<MyProduct> myCreator; 

5. Naming conventions. It's good practice to use naming  convenhons^ 
it clear vou're usine factory methods. For example, the MacApp Macmtosn 
applfcahon "amZrk [A>] always declares the a^'ract o^rahonthat 
defines the factory method as Class- DoMakeClass ( ) ,  w h e r e  
the Product class. 
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Sample Code builds and returns a maze One problem 
The function CreateMaze (page the classes of maze, rooms, doors, and 
with this function is thê  glasses choose these components. 

and door objects: 

class MazeGame { 
public: 

Maze* CreateMaze() ; 

// factory methods: 

virtual Maze* MakeMazeO const 
{ return new Maze; ) 

virtual Room* MakeRoom(int n) const 
{ return new Room(n); I 

virtual Wall* MakeWallO const 
{ return new Wall; } 

virtual Do o r * MakeDoor (Room* rl, Room* r2> const 
{ return new Door(rl, r2); ) 

} ; 

Each factory method returns a maze component of a given type. MazeGame pro­
vides default implementations that return the simplest kinds »»t maze, rooms, 
walls, and doors. 
Now we can rewrite CreateMaze to use these factory methods: 

Maze* MazeGame::CreateMaze () { 
Maze* aMaze = MakeMazeO; 

Room* rl = MakeRoom(1); 
Room* r2 = MakeRoom(2); 
Door* theDoor = MakeDoor(rl, r2); 

aMaze->AddRoom(rl); 
aMaze->AddRoom(r2); 

rl->SetSide (North, MakeWallO); 
rl->SetSide(East, theDoor); 
rl->SetSide (South, MakeWallO); 
rl->SetSide (West, MakeWallO); 

r2->SetSide (North, MakeWallO); 
r2->SetSide (East, MakeWallO); 
r2->SetSide (South, MakeWallO); 
t2->SetSide(West, theDoor); 
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return aMaze; 
) 

Different games can subclass Ma z eGame to specialize parts of the maze. MazeGame 
subclasses can redefine some or all of the factory methods to specify variations 
in products. For example, a BombedMazeGame can redefine the Room and Wall 
products to return the bombed varieties: 

class BombedMazeGame : public MazeGame { 
public: 

BombedMazeGame(); 

virtual Wall* MakeWall() const 
{ return new BombedWall; } 

virtual Room* MakeRoom(int n) const 
{ return new RoomWithABomb(n) ; } 

) ;  

An EnchantedMazeGame variant might be defined like this: 

class EnchantedMazeGame : public MazeGame { 
public: 

EnchantedMazeGame(); 

virtual Room* MakeRoom(int n) const 
{ return new EnchantedRoom(n, CastSpell()); } 

virtual Door* MakeDoor(Room* rl, Room* r2) const 
( return new DoorNeedingSpell(rl, r2); } 

protected: 
Spell* CastSpell() const; 

)J 

lown Uses 
Factory methods pervade toolkits and 

ample is a typical use in MacApp and ET++ lWCM&»j. me F 

is from Unidraw. 

Class View in the Smalltalk-80 ^"factory 
defaultController that creates a co"trolle ' j of their default controller 
method (Par90l. But subclasses of View specify the ^ frQm which default-
by defining defaultControllerClass, n ^lass is the real factory method, 
Controller creates instances. So defaultControllerClass 
that is, the method that subclasses should override. Hpfined 

A more esoteric example in Smalltalk-80 is the fac^^^ssesf Tl^enables a class 
by Behavior (a superclass of all objects representing classes). 
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t its source code. For example, a client can define 
to use a customized sourCe code of a class with emfn-dded SQL 
a class SQLParser to analyze'* ^ parselClass to return the standard 
Statements. The Beha™>r class embedded SQL statementsovemdes 
Smalltalk Parser class. A class returns the SQLParser class. 
this method (as a c ass Technologies |!ON94| uses Factory Method to 
The Orbix ORB system from I p (2Q7)) when an ob}(Xi 

generate an approp^ate ^ Y hod makes it «tfy lO replace the default 

Related Patterns 
Abstract Factory (87) is often implemented with factory methods The Mo tvahon 
example m the Abstract Factory pattern illustrates Factory Method as well. 

Factory methods are usually called within Template Method. (325). In the door-
ment example above, NewDocument is a template method. 
Prototypes (117) don't require subclassing Creator. However, they often require 
an Initialize operation on the Product class Creator uses Initialize to initialize the 
object. Factory Method doesn't require such an operation. 
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PROTOTYPE NK. . , 
Object Creational 

Intent 
Specify the kinds of objects to create using a prototypical instance, and create new 
objects by copying this prototype. 

Motivation 
You could build an editor for music scores by customizing a general framework 
for graphical editors and adding new objects that represent notes, rests, and 
staves. The editor framework may have a palette of tools for adding these music 
objects to the score. The palette would also include tools for selecting, moving, 
and otherwise manipulating music objects. Users will click on the quarter-note 
tool and use it to add quarter notes to the score. Or they can use the move tool to 
move a note up or down on the staff, thereby changing its pitch. 

Let's assume the framework provides an abstract Graphic class for graphical com­
ponents, like notes and staves. Moreover, it'll provide an abstract Tool class for 
defining tools like those in the palette. The framework also predefines a Graphic-
Tool subclass for tools that create instances of graphical objects and add them to 
the document. 

But GraphicTool presents a problem to the framework designer. The classes for 
notes and staves are specific to our application, but the GraphicTool class belongs 
to the framework. GraphicTool doesn't know how to create instances of our music 
classes to add to the score. We could subclass GraphicTool for each kind of music 
object, but that would produce lots of subclasses that differ only in the kind of 
music object they instantiate. We know object composition is a flexible alternative 
to subclassing. The question is, how can the framework use it to parameterize 
instances of GraphicTool by the class of Graphic they're supposed to create? 

The solution lies in making GraphicTool create a new Graphic by copying or 
"cloning" an instance of a Graphic subclass. We call this instance a prototype. 
GraphicTool is parameterized by the prototype it should clone and add to the 
document. If all Graphic subclasses support a Clone operation, then the Graphic-
Tool can clone any kind of Graphic. 
So in our music editor, each tool for creating a music object is an instance of 
GraphicTool that's initialized with a different prototype, ac _TaP , 
stance will produce a music object by cloning its prototype an a 
to the score. 
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Tool 

Manipulate() 

RotateTool 

I 
Draw<Po*Oon) 

OotmO 

Manipulate*) 

GraphicTool 

Manipulate*) <p 

prototype 
O—1 

p = prototype->Clone() 

while (user drags mouse) { 
p->Draw(new position) 

insert p into drawing 

I 
Staff 

Draw(Po8rt»on) 
Clone*) 

MuttcsiNot* 

I 
Whole Note 

Draw* Portion) 
Clone*) 9 

Dree<Poe>on) 

CtonaO 9 

return copy of aetf ^ reeawcopyofM*^ 

We can use the Prototype pattern to reduce the number of evo^further 
We have separate classes for whole notes and half notes, but that » probably 
unnecessary. Instead they could be instances of the same class Initialized with 
different bitmaps and durations. A tool for creating whole notes Ins onus just a 
GraphicTool whose prototype is a MusicalNote initialized to be a whole note Ins 
can reduce the number of classes in the system dramatically. It also makes it easier 
to add a new kind of note to the music editor. 

Applicability 
Use the Prototype pattern when a system should be independent of how its 
products are created, composed, and represented; ami 

• when the classes to instantiate are specified at run-time, for example, by 
dynamic loading; or 

• to avoid building a class hierarchy of factories that parallels the class hierar­
chy of products; or 

• when instances of a class can have one of only a few different combinations 
of state. It may be more convenient to install a corresponding number of 
prototypes and clone them rather than instantiating the class manually, each 
time with the appropriate state. 



Structure 

PROTOTYPE 119 

Client 

Operation)) 9 

prototype 

p <= prototype->Clone() 5 

Prototype 

Clonef) 

return copy of self 

~1 
ConcretePrototypel ConcretePrototype2 

Clone() 9 CloneQ 9 

return copy of self 

Participants 
• Prototype (Graphic) 

- declares an interface for cloning itself. 

• ConcretePrototype (Staff, WholeNote, HalfNote) 

- implements an operation for cloning itself. 

• Client (GraphicTool) 

- creates a new object by asking a prototype to clone itself. 

Collaborations 
• A client asks a prototype to clone itself. 

Consequences 
Prototype has many of the same consequences that Abstract Factory (87) and 
Builder (97) have: It hides the concrete product classes from the client, thereby 
reducing the number of names clients know about. Moreover, these patterns let a 
client work with application-specific classes without modification. 

Additional benefits of the Prototype pattern are listed below. 

1. Adding and removing products at run-time. Prototypes let y°"^™totyp. 
new concrete product class into a system simp y y reS* , creational 
ical instance with the client. That's a bit more 
patterns, because a client can install and remove prototypes at run time. 

2. Specifying new objects by varying values. Hlghtyfor an 
fine new behavior through object composition-by specifying va 
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. ,nd not by defining new classes. You ef-

objecfs variables, «amP ^ b instantiating existing cUsses and 
fectively define new kinds °' f client objects. A client can exhibit 
registering '^^XCs^nsibility to the prototype. 
new behavior by deleg g new »classes" without programming. 
This kind of design lets "sers u to instantiating a class. The Prototype 
„ , -x a nrototvpe is simuai J In our music ixu» ~ ;c Qimilar to insicuui«"»"f> •• 
In fact, cloning ber of classes a system needs. In 
pattern can^at^duce ^ a Umjtless variety of music ob,ects. 
editor, one Graph,cTool applications build objects 

3. Specifying new objects f jrcuit design, for example, build cir-
from parts and subparts. Editor:Jo tion5 ^ ̂ y0„ 

t̂e1:"-dê ed structures, say, to use a specific subcircui, 

again and again. We simply add this subcircuil as 

Itltotype' to the pTlerte of available circuit elements. As long as the com-
'p£St object implements Clone as a deep copy, circuits with different 
structures can be prototypes. 

4. Reduced subclassing. Factory Method (107. olton produces a hierarchy of C re­
ator classes that parallels the product class hierarchy. The I rototype pattern 
lets you clone a prototype instead of asking a factory method to make a new 
object. Hence you don't need a Creator class hierarchy at all. rhis benefit 
applies primarily to languages like C++ that don't treat claues as first-class 
objects. Languages that do, like Smalltalk and Objective C, derive less bene 
fit, since you can always use a class object as a creator. Class objects already 
act like prototypes in these languages. 

5. Configuring an application with classes dynamically. Some run-time environ­
ments let you load classes into an application dynamically. The Prototype 
pattern is the key to exploiting such facilities in a language likeC ++. 
An application that wants to create instances of a dynamically loaded class 
won'tbe able to reference its constructor statically. Instead, the run-time envi­
ronment creates an instance of each class automatically when it 's loaded, and 
it registers the instance with a prototype manager (see the Implementation 
section). Then the application can ask the prototype manager for instances of 
newly loaded classes, classes that weren't linked with the program originally. 
The ET++ application framework IWGM881 has a run-time system that uses 
this scheme. 

The mam liability of the Prototype pattern is that each subclass of Prototype must 
implement the clone operation, which may be difficult. For example, adding 
Clone is difficult when the classes under consideration already exist. Implement­
ing c one can be difficult when their internals inc lude objec is that don't BUppOlt 
copying or have circular references. 

~l Such applicationsTeflecTth^Composite (163) and Decorator (175) patterns. 
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mplementation 
Prototype is particularly useful with static languages like C++, where classes are 
not objects, and little or no type information is available at run-time It's less 
important in languages like Smalltalk or Objective C that provide what amounts 
toa prototype (i.e., a class object) for creating instances of each class. This pattern is 
built into prototype-based languages like Self [US87], in which all object creation 
happens by cloning a prototype. 

Consider the following issues when implementing prototypes: 

1. Using a prototype manager. When the number of prototypes in a system isn't 
fixed (that is, they can be created and destroyed dynamically), keep a registry 
of available prototypes. Clients won't manage prototypes themselves but will 
store and retrieve them from the registry. A client will ask the registry for a 
prototype before cloning it. We call this registry a prototype manager. 
A prototype manager is an associative store that returns the prototype match­
ing a given key. It has operations for registering a prototype under a key and 
for unregistering it. Clients can change or even browse through the registry 
at run-time. This lets clients extend and take inventory on the system without 
writing code. 

2. Implementing the Clone operation. The hardest part of the Prototype pattern 
is implementing the Clone operation correctly. It's particularly tricky when 
object structures contain circular references. 
Most languages provide some support for cloning objects. For example, 
Smalltalk provides an implementation of copy that's inherited by all sub­
classes of Object. C++ provides a copy constructor. But these facilities don t 
solve the "shallow copy versus deep copy" problem [GR83]. That is, does 
cloning an object in turn clone its instance variables, or do the clone and 
original just share the variables? 
A shallow copy is simple and often sufficient, and that's what Smalltalk 
provides bv default. The default copy constructor in C++ does a 
wise copy, which means pointers will be shared between the copy and the 
original. But cloning prototypes with complex structures usually' 
deep copy, because the clone and the original must be independent. ̂ ^fore 
you must ensure that the clone's components are clones of the Prototype 
components. Cloning forces you to decide what if anything will be shared. 
If objects in the system provide Save and Load operations, then you^n use 
them to provide a default implementation of Clone simpy y § 
object and loading it back immediately. The Save 
into a memory buffer, and Load creates a duplicate by reconstructing 

object from the buffer. 

3. Initializing clones. White s°me to values 
is, others will want to initialize some or all oi 
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ran't pass these values in the Clone oper-

of their choosing. You 8®^ ^tween classes of prototypes Some 
ation, because then ™mber w parame.ers. others won . need 
prototypes might need mulup e lKm preciudes a uniform cloning 
any. Passing parameters m tne 
interface. . .vr)P classes already define operations for 
It might be the case that your pn ̂  ^ ̂  ̂  usc tlu-e operations immedi-
(re)settingkey pieces of sta^ . haVe to introduce an Initialize 
ately after cloning. If not t y h (akes initialization parame-
operation (see the Sampte Code^sert ^-ooofdta^ Beware ol 
ters as arguments and se copies may have to be deleted (either 
deep-copying Clone »P- ^ J^L.,al,zr them, 
explicitly or within Initialize; oeiui y 

Sample Code 
m subclass of the MazeFactory class 

We'll define ai MaizeI r ' ctory wi„ be initialized with prototypes of the 
Ibjerts ft wfil create so that we don't have to subclass it just to change the classes 
of walls or rooms it creates. 
MazePrototypeFactory augments the MazeFactory interface with a con-
structor that takes the prototypes as arguments: 

class MazePrototypeFactory : public MazeFactory 

public: 
MazePrototypeFactory (Maze*, Wall", Room*. Door*); 

virtual Maze* MakeMazeO const; 
virtual Room* MakeRoom(int) const; 
virtual Wall* MakeWall() const; 
virtual Door* MakeDoor(Room*, Room*) const; 

private: 
Maze* _prototypeMaze; 
Room* _prototypeRoom; 
Wall* _prototypeWall; 
Door* _prototypeDoor; 

The new constructor simply initializes its prototypes: 

MazePrototypeFactory: :MazePrototypeFactory ( 
^ ^ Maze* m. Wall* w, Room* r, Door* d 

_prototypeMaze = m; 
_prototypeWall = w; 
_prototypeRoom = r; 
_prototypeDoor = d: 

} 
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The member functions for creating walls, rooms, and doors are similar Each 
dones a prototype and then initializes it. Here are the definitions of MakeWall 
and MakeDoor: 

Wall* MazePrototypeFactoryMakeWall () const { 
return _prototypeWall->Clone(); 

> 

Door* MazePrototypeFactory: :MakeDoor (Room* rl, Room *r2) const { 
Door* door = _prototypeDoor->Clone() ; 
door->Initialize(rl, r2); 
return door; 

) 

We can use MazePrototypeFactory to create a prototypical or default maze 
just by initializing it with prototypes of basic maze components: 

MazeGame game; 
MazePrototypeFactory simpleMazeFactory( 

new Maze, new Wall, new Room, new Door 
> ;  

Maze* maze = game.CreateMaze(simpleMazeFactory); 

To change the type of maze, we initialize MazePrototypeFactory with a dif­
ferent set of prototypes. The following call creates a maze with a BombedDoor 
and a RoomWithABomb: 

MazePrototypeFactory bombedMazeFactory( 
new Maze, new BombedWall, 
new RoomWithABomb, new Door 

) ; 

An object that can be used as a prototype, such as an instance of Wal l ,  must 
support the Clone operation. It must also have a copy constructor for cloning-.It 
may also need a separate operation for reinitializing internal state, e a 
Initialize operation to Door to let clients initialize the clone s rooms. 

Compare the following definition of Door to the one on page 83. 

class Door : public MapSite { 
public: 

Door(); 
Door(const Doors.) ; 

virtual void Initialize(Room*, Room*); 
virtual Door* Clone() const; 
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private: 
Room1 

Room: 
* _rooml; 
,* _room2; 

} ; 

Door::Door 
_rooml 
_room2 

{const Door& other) { 
= other._rooml; 
= other._room2; 

} 

void poor::initialize (Room* rl. Room* x2) I 
rooml = r1; 
room2 = r2; 

Door* Door::Clone () const { 
return new Door(*this); 

} 

The BombedWall subclass must override Clone and implement a corresponding 
copy constructor. 

class BombedWall : public Wall { 
public: 

BombedWall(); 
BombedWall(const BombedWa11&) ; 

virtual Wall* Clone() const; 
bool HasBomb(); 

private: 
bool _bomb; 

} ; 

BombedWall:: BombedWall (const BombedWallfc o the r )  :  Wall( o the r )  (  
_bomb = other._bomb; 

} 

Wall* BombedWall::Clone () const { 
return new BombedWall(*this); 

} 

Although BombedWall: : Clone returns a Wall*, its implementation returns a 
pointer to a new instance of a subclass, that is, a BombedWa 11 *. We define Clone 
like this m the base class to ensure that clients th.it clone the prototype don't have 
to know about their concrete subclasses. Clients should never need to downcast 
the return value of Clone to the desired type. 

In Smalltalk, you can reuse the standard copy method inherited from Object 
one any MapSite. You can use MazeFactory to produce the prototypes 
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you'll need; for example, you can create a room by supplying the mme a.™ 
3 diC"0nary 'hat maPS "ameS f° Proto'yP- make" 

make: partName 
(partCatalog at: partName) copy 

Given appropriate methods for initializing the MazeFactory with prototypes, 
you could create a simple maze with the following code: 

CreateMaze 
on: (MazeFactory new 

with: Door new named: Kdoor; 
with: Wall new named: #wall; 
with: Room new named: (troom; 
yourself) 

where the definition of the on: class method for CreateMaze would be 

on: aFactory 
I rooml room2 I 
rooml (aFactory make: iroom) location: 101. 
room2 := (aFactory make: itroom) location: 201. 
door := (aFactory make: idoor) from: rooml to: room2. 

rooml 
atSide: #north put: (aFactory make: #wall); 
atSide: #east put: door; 
atSide: #south put: (aFactory make: #wall); 
atSide: Iwest put: (aFactory make: #wall). 

room2 
atSide: #north put: (aFactory make: #wall); 
atSide: #east put: (aFactory make: #wall); 
atSide: #south put: (aFactory make: #wall); 
atSide: *west put: door. 

* Maze new 
addRoom: rooml; 
addRoom: room2; 
yourself 

iown Uses 
Perhaps the first example of the Prototype pattern was in Ivan Sutherland's Sketch­
pad system |Sut631. The first widely known application of the pattern in an objec -
oriented language was in ThingLab, where users could form a composi e o je 
and then promote it to a prototype by installing it in a library o "r"®* 
jects [BorSll. Goldberg and Robson mention prototypes as a Patte™j ' 
Coplien [Cop92l gives a much more complete description, e e -ations 

related to the Prototype pattern for C++ and gives many examp e 

Etgdb is a debugger front-end based on ET++ that provides a 
interface to different line-oriented debuggers. Each debugger as 
tag DebuggerAdaptor subclass. For example, GdbAdaptor adapts etgdb 
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f r Ml J edb while SunDbxAdaptor adapts etgdb to Sun's dbx 
command syntax of GINU g , Debugger Adaptor classes hard-coded into 

DebuggerAdaptor that works for that del ugg . 

thattSdPbPv°rheVMo°d ComToser - beled as a prototype by placing it in this 
The Prototype pattern lets Mode Composer support an untauted set of 

interaction techniques. 
The music editor example discussed earlier is based on the Unidraw drawing 
framework [VL90J. 

Related Patterns 
Prototype and Abstract Factory (87) are competing patterns in some ways, as we 
discuss at the end of this chapter. They can also be used together, however. An 
Abstract Factory might store a set of prototypes from which to clone and return 
products objects. 
Designs that make heavy use of the Composite (163) and Decorator (175) patterns 
often can benefit from Prototype as well. 
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SINGLETON Object Creational 

Intent 
Ensure a class only has one instance, and provide a global point of access to it. 

Motivation 
It's important for some classes to have exactly one instance. Although there can be 
many printers in a system, there should be only one printer spooler. There should 
be only one file system and one window manager. A digital filter will have one 
A/D converter. An accounting system will be dedicated to serving one company. 

How do we ensure that a class has only one instance and that the instance is easily 
accessible? A global variable makes an object accessible, but it doesn't keep you 
from instantiating multiple objects. 

A better solution is to make the class itself responsible for keeping track of its sole 
instance. The class can ensure that no other instance can be created (by intercepting 
requests to create new objects), and it can provide a way to access the instance. 
This is the Singleton pattern. 

Applicability 
Use the Singleton pattern when 

• there must be exactly one instance of a class, and it must be accessible to 
clients from a well-known access point. 

• when the sole instance should be extensible by subclassing, and clients 
should be able to use an extended instance without modifying their code. 

Structure 
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Participants 
• Singleton nngleton . . 

„ Tn,tance operation that lets clients access its unique instance. 
"" Instance is a class operation (that is, a class method in Smalltalk and a static 

member function in C++). 
_ mav be responsible for creating its own unique instance. 

Collaborations 
. Clients access a Singleton instance solely through Singleton s instance opera-

tion. 

Consequences 
The Singleton pattern has several benefits: 

1. Controlled, access to sole instance. Because the Singleton class encapsulates its 
sole instance, it can have strict control over how and when clients access it. 

2. Reduced name space. The Singleton pattern is an improvement over global 
variables. It avoids polluting the name space with global variables that store 
sole instances. 

3. Permits refinement of operations and representation. The Singleton class may be 
subclassed, and it's easy to configure an application with an instance of this 
extended class. You can configure the application with an instance of the 
class you need at run-time. 

4. Permits a variable number of instances. The pattern makes it easy to change your 
mind and allow more than one instance of the Singleton class. Moreover, 
you can use the same approach to control the number of instances that 
the application uses. Only the operation that grants access to the Singleton 
instance needs to change. 

5. More flexible than class operations. Another way to package a singleton's func­
tionality is to use class operations (that is, static member functions in C++ or 
class methods in Smalltalk). But both of these language techniques make it 
hard to change a design to allow more than one instance of a class. Moreover, 
static member functions in C++- are never virtual, so subclasses can't override 
them polymorphically. 

Implementation 
Here are implementation issues to consider when using the Singleton pattern: 

1. Ensuring a unique instance. The Singleton pattern makes the sole instance a 
norma instance of a class, but that class is written so that only one instance 
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can ever be created. A common way to do this is to hide the operation that 
creates the instance behind a class operation (that is, either a static member 
function or a class method) that guarantees only one instance is created. This 
operation has access to the variable that holds the unique instance, and it 
ensures the variable is initialized with the unique instance before returning 
its value. This approach ensures that a singleton is created and initialized 
before its first use. 
You can define the class operation in C++ with a static member function 
Instance of the S i ng 1 e t on class. S i ng 1 e t on also defines a static member 
variable .instance that contains a pointer to its unique instance. 
The Singleton class is declared as 

class Singleton { 
public: 

static Singleton* Instanced ; 
protected: 

Singleton(); 
private: 

static Singleton* .instance; 
) ; 

The corresponding implementation is 

Singleton* Singleton::_instance = 0; 

Singleton* Singleton::Instance () { 
if (.instance •• 0) ( 

.instance = new Singleton; 
) 
return .instance; 

) 

Clients access the singleton exclusively through the instance member func­
tion. The variable .instance is initialized to 0, and the static member func­
tion Instance returns its value, initializing it with the unique instance if i 
is 0. Instance uses lazy initialization; the value it returns isn t created and 
stored until it's first accessed. 
Notice that the constructor is protected. A client that tries to m^ntiate 
Singleton directly will get an error at compile-tune. This ensures that o y 
one instance can ever get created. 
Moreover, since the .instance is a pointer to a gingle-
Instance member function can assign a pointer to eCode 

ton to this variable. We'll give an example of this in the Samp • 

There's another thing to note about the C++ ^"automatic 
to define the singleton as a global or static object and then rely on 
initialization. There are three reasons for this: 
(a) We can't guarantee that only one instance of a static object will ever be 

declared. 
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nnrtlloh information to instantiate every singleton 
(W rst^fSlizalion time A singleton might requite values that are 

computed later in the program's execution. 

( c )  C++ doesn't define the order in which constructors for global objects are 
called across translation units [ES90], This means that no dependences 
can exist between singletons; if any do, then errors are mevttable. 

An added (albeit small) liability of the global/static object approach is that 
itforces all singletons to be created whether they are used or not. Ustng a 
static member function avoids all of these problems. 
In Smalltalk, the function that returns the unique instance is implemented 
as a class method on the Singleton class. To ensure that only one instance is 
created, override the new operation. The resulting Singleton class might have 
the following two class methods, where Solelnstance is a class variable 
that is not used anywhere else: 

new 
self error: 'cannot create new object' 

default 
Solelnstance isNil ifTrue: [Solelnstance super new). 
" Solelnstance 

2. Subclassing the Singleton class. The main issue is not so much defining the 
subclass but installing its unique instance so that clients will be able to use 
it. In essence, the variable that refers to the singleton instance must get 
initialized with an instance of the subclass. The simplest technique is to 
determine which singleton you want to use in the Singleton's Instance 
operation. An example in the Sample Code shows how to implement this 
technique with environment variables. 
Another way to choose the subclass of Singleton is to take the implementation 
of Instance out of the parent class (e.g., MazeFactory) and put it in the 
subclass. That lets a C++ programmer decide the class of singleton at link-
time (e.g., by linking in an object file containing a different implementation) 
but keeps it hidden from the clients of the singleton. 
The link approach fixes the choice of singleton class at link-time, which 
makes it hard to choose the singleton class at run-time. Using conditional 
statements to determine the subclass is more flexible, but it hard-wires the 
set of possible Singleton classes. Neither approach is flexible enough in all 
cases. 

A more flexible approach uses a registry of singletons. Instead of having 
Instance define the set of possible Singleton classes, the Singleton classes 
can register their singleton instance by name in a well-known registry. 
The registry maps between string names and singletons. When Ins tance  
nee s a sing eton, it consults the registry, asking for the singleton by name. 
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The registry looks up the corresponding singleton (if it exists) and returns it 
This approach frees Instance from knowing all possible Singleton classes 
or instances. All it requires is a common interface for all Singleton classes 
that includes operations for the registry: 

class Singleton { 
public: 

static void Register(char* name, Singleton*); 
static Singleton* Instanced ; 

protected: 
static Singleton* Lookup(const char* name); 

private: 
static Singleton* .instance; 
static List<NameSingletonPair>* .registry; 

Register registers the Singleton instance under the given name. To keep 
the registry simple, we'll have it store a list of NameSingletonPair objects. 
Each NameSingletonPair maps a name to a singleton. The Lookup op­
eration finds a singleton given its name. We'll assume that an environment 
variable specifies the name of the singleton desired. 

Singleton* Singleton::Instance () { 
if (.instance == 0) { 

const char* singletonName = getenv("SINGLETON") ; 
// user or environment supplies this at startup 

.instance = Lookup(singletonName); 
// Lookup returns 0 if there's no such singleton 

) 
return .instance; 

) 

Where do Singleton classes register themselves? One possibility is in their 
constructor. For example, a MySingleton subclass could do the following: 

MySingleton::MySingleton() { 

) 
Singleton::Register("MySingleton", this 

Of course, the constructor won't get called unless someone mstanUates the 
class, which echoes the problem the Singleton pattern trying to^ol -e. 
We can get around this problem in C++ by defining a 
MySingleton. For example, we can define 

static MySingleton theSingleton; 

in the file that contains MySingleton's implementation. 

No longer is the Singleton class responsible for ̂ ^^^^hoke accessible 
its primary responsibility is to make the sing e 
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. i • . still has a potential drawback— 
nalVSt~eSsrfCaU possible Singleton subclasses must be oeated, or 

umn't p-et registered. 

classes, like BombedWall objects instead of plain Wal 1 ob)ects. 
What's relevant here is that the Maze application needs only one instance of 
Tmaze factory, and that instance should be available to code that builds any 
part of the rZe. This is where the Singleton pattern comes in. By making the 
MazeFactory a singleton, we make the maze object globally accessible w.thout 
resorting to global variables. 
For simplicity, let's assume we'll never subclass MazeFactory (We'll consider 
the alternative in a moment.) We make it a Singleton class in C++ by adding a static 
Instance operation and a static .instance member to hold the one and only 
instance. We must also protect the constructor to prevent accidental instantiation, 
which might lead to more than one instance. 

class MazeFactory { 
public: 

static MazeFactory* Instance () ; 

// existing interface goes here 
protected: 

MazeFactory(); 
private: 

static MazeFactory* ..instance; 
} ; 

The corresponding implementation is 

MazeFactory* MazeFactory: :_instance = 0; 

MazeFactory* MazeFactory::Instance () { 
if (..instance ==0) { 

..instance = new MazeFactory; 
) 
return .instance; 

} 

Now let s consider what happens when there are subclasses of Ma zeFac t ory, and 
the application must decide which one to use. We'll select the kind of maze through 
an environment variable and add code that instantiates the proper MazeFactory 
subclass based on the environment variable's value. The Instance operation is 
a good place to put this code, because it already instantiates MazeFactory: 
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MazeFactory* MazeFactory:: Instance () { 
if (.instance = = 0) { 

const char* mazeStyle = getenv("MAZESTYLE") ; 

if (strcmp(mazeStyle, "bombed") == 0) { 
.instance = new BombedMazeFactory; 

) else if (strcmp(mazeStyle, "enchanted") == 0) { 
.instance = new EnchantedMazeFactory; 

// ... other possible subclasses 

) else ( // default 
.instance = new MazeFactory; 

) 
) 
return .instance; 

} 

Note that Instance must be modified whenever you define a new subclass of 
MazeFactory. That might not be a problem in this application, but it might be 
for abstract factories defined in a framework. 

A possible solution would be to use the registry approach described in the Imple­
mentation section. Dynamic linking could be useful here as well—it would keep 
the application from having to load all the subclasses that are not used. 

Cnown Uses 
An example of the Singleton pattern in Smalltalk-80 [Par90] is the set of changes to 
the code, which is ChangeSet current. A more subtle example is the relation­
ship between classes and their metaclasses. A metaclass is the class of a class, and 
each metaclass has one instance. Metaclasses do not have names (except indirectly 
through their sole instance), but they keep track of their sole instance and will no 
normally create another. 
The Interviews user interface toolkit [ LCI+92] uses the Singleton pattern to access 
the unique instance of its Session and WidgetKit classes, among ^rs. Ses^on 
defines the application's main event dispatch loop, stores t e user s . , 
stylistic preferences, and manages connections to eme,or :more piayŝ £0%  ̂
WidgetKit is an Abstract Factory (87) for defining the look and feel c>f 

widgets. The WidgetKit: : instance () operation determines to^ P^a 

WidgetKit subclass that's instantiated based on an environment ™^bl^hat 
Sessfon defines. A similar operation on Session determines whethe 
or color displays am supported and configures the singleton Session 
accordingly. 
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Related Patterns Singleton pattern. See Abstract 



DISCUSSION OF CREATION A L PATTERNS 135 

Discussion of Creational Patterns 

There are two common ways to parameterize a system by the classes of objects it 
creates. One way is to subclass the class that creates the objects; this corresponds to 
using the Factory Method (107) pattern. The main drawback of this approach is that it 
can require creating a new subclass just to change the class of the product. Such changes 
can cascade. For example, when the product creator is itself created by a factory method, 
then you have to override its creator as well. 

The other way to parameterize a system relies more on object composition: Define an 
object that's responsible for knowing the class of the product objects, and make it a 
parameter of the system. This is a key aspect of the Abstract Factory (87), Builder (97), 
and Prototype (117) patterns. All three involve creating a new "factory object" whose 
responsibility is to create product objects. Abstract Factory has the factory object pro­
ducing objects of several classes. Builder has the factory object building a complex 
product incrementally using a correspondingly complex protocol. Prototype has the 
factory object building a product by copying a prototype object. In this case, the factory 
object and the prototype are the same object, because the prototype is responsible for 
returning the product. 

Consider the drawing editor framework described in the Prototype pattern. There are 
several ways to parameterize a GraphicTool by the class of product: 

• By applying the Factory Method pattern, a subclass of GraphicTool will be created 
for each subclass of Graphic in the palette. GraphicTool will have a NewGraphic 
operation that each GraphicTool subclass will redefine. 

• By applying the Abstract Factory pattern, there will be a class hierarchy of Graph-
icsFactories, one for each Graphic subclass. Each factory creates just one product 
in this case: CircleFactory will create Circles, LineFactory will create Lines, and 
so on. A GraphicTool will be parameterized with a factory for creating the appro­
priate kind of Graphics. 

• By applying the Prototype pattern, each subclass of Graphics will implement the 
Clone operation, and a GraphicTool will be parameterized with a prototype of 
the Graphic it creates. 

Which pattern is best depends on many factors. In our drawing editor framework, the 
Factory Method pattern is easiest to use at first. It's easy to define a new subclass of 
GraphicTool, and the instances of GraphicTool are created only when the palette is 
defined. The main disadvantage here is that GraphicTool subclasses proliferate, and 
none of them does very much. 

Abstract Factory doesn't offer much of an improvement, because it requires an equally 
arge GraphicsFactory class hierarchy. Abstract Factory would be preferable to Factory 

ethod only if there were already a GraphicsFactory class hierarchy—either because 
1 e compiler provides it automatically (as in Smalltalk or Objective C) or because it's 
needed in another part of the system. 
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• nrobablv the best for the drawing editor framework, 
Overall, the Prototype pattern is p a clone operation on each Graphics class. That 
because it only requires imple 6 can be used for purposes other than pure 
reduces the number o <operation). 
instantiation (e.g., a customizable and only a little more complicated. 
Factory Method makes a des g whereas Factory Method only requires a new 
Other design patterns require ^ ̂  s(andard way to objects,butit 
operation. People often us y changes or when instantiation -- — 
those that use Factory e . creational pattems as the designer 

SSS!lore flexibility is needed. Knowing many design pattems gives you 
more choices when trading off one design criterion against another. 


