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Chapter 5 

Behavioral Patterns 

Behavioral patterns are concerned with algorithms and the assignment of responsibili
ties between objects. Behavioral patterns describe not just patterns of objects or classes 
but also the patterns of communication between them. These patterns characterize 
complex control flow that's difficult to follow at run-time. They shift your focus away 
from flow of control to let you concentrate just on the way objects are interconnected. 

Behavioral class patterns use inheritance to distribute behavior between classes. This 
chapter includes two such patterns. Template Method (325) is the simpler and more 
common of the two. A template method is an abstract definition of an algorithm. It 
defines the algorithm step by step. Each step invokes either an abstract operation or 
a primitive operation. A subclass fleshes out the algorithm by defining the abstract 
operations. The other behavioral class pattern is Interpreter (243), which represents 
a grammar as a class hierarchy and implements an interpreter as an operation on 
instances of these classes. 

Behavioral object patterns use object composition rather than inheritance. Some de
scribe how a group of peer objects cooperate to perform a task that no single object 
can carry out by itself. An important issue here is how peer objects know about each 
other. Peers could maintain explicit references to each other, but that would increase 
their coupling. In the extreme, every object would know about every other. The Me
diator (273) pattern avoids this by introducing a mediator object between peers. The 
mediator provides the indirection needed for loose coupling. 

Chain of Responsibility (223) provides even looser coupling. It lets you send requests to 
an object implicitly through a chain of candidate objects. Any candidate may fulfill the 
request depending on run-time conditions. The number of candidates is open-ended, 
and you can select which candidates participate in the chain at run-time. 

The Observer (293) pattern defines and maintains a dependency between objects. The 
classic example of Observer is in Smalltalk Model/View/Controller, where all views 
of the model are notified whenever the model's state changes. 

221 
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Other behavioral object patterns are concerned with encapsulating behavior in an object 
and delegating requests to it. The Strategy (315) pattern encapsulates an algorithm in 
an object. Strategy makes it easy to specify and change the algorithm an object uses. 
The Command (233) pattern encapsulates a request in an object so that it can be passed 
as a parameter, stored on a history list, or manipulated in other ways. The State (305) 
pattern encapsulates the states of an object so that the object can change its behavior 
when its state object changes. Visitor (331) encapsulates behavior that would otherwise 
be distributed across classes, and Iterator (257) abstracts the way you access and traverse 
objects in an aggregate. 
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Chain of Responsibility object Behavioral 

Intent 
Avoid coupling the sender of a request to its receiver by giving more than one 
object a chance to handle the request. Chain the receiving objects and pass the 
request along the chain until an object handles it. 

Motivation 
Consider a context-sensitive help facility for a graphical user interface. The user 
can obtain help information on any part of the interface just by clicking on it. 
The help that's provided depends on the part of the interface that's selected and 
its context; for example, a button widget in a dialog box might have different 
help information than a similar button in the main window. If no specific help 
information exists for that part of the interface, then the help system should 
display a more general help message about the immediate context—the dialog 
box as a whole, for example. 

Hence it's natural to organize help information according to its generality—from 
the most specific to the most general. Furthermore, it's clear that a help request 
is handled by one of several user interface objects; which one depends on the 
context and how specific the available help is. 

The problem here is that the object that ultimately provides the help isn't known 
explicitly to the object (e.g., the button) that initiates the help request. What we 
need is a way to decouple the button that initiates the help request from the objects 
that might provide help information. The Chain of Responsibility pattern defines 
how that happens. 

The idea of this pattern is to decouple senders and receivers by giving multiple 
objects a chance to handle a request. The request gets passed along a chain of 
objects until one of them handles it. 

aSaveDialog 

specific general 
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The first object in the chain receives the request and either handles it or forwards 
it to the next candidate on the chain, which does likewise. The object that made 
the request has no explicit knowledge of who will handle it—we say the request 
has an implicit receiver. 

Let's assume the user clicks for help on a button widget marked "Print." The 
button is contained in an instance of PrintDialog, which knows the application 
object it belongs to (see preceding object diagram). The following interaction 
diagram illustrates how the help request gets forwarded along the chain: 

aPrintButton 

X 
aPrintDialog anApplication 

HandleHelp() 

HandleHelpQ 

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at 
anApplication, which can handle it or ignore it. The client that issued the request 
has no direct reference to the object that ultimately fulfills it. 

To forward the request along the chain, and to ensure receivers remain implicit, 
each object on the chain shares a common interface for handling requests and for 
accessing its successor on the chain. For example, the help system might define 
a HelpHandler class with a corresponding HandleHelp operation. HelpHandler 
can be the parent class for candidate object classes, or it can be defined as a mixin 
class. Then classes that want to handle help requests can make HelpHandler a 
parent: 
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The Button, Dialog, and Application classes use HelpHandler operations to handle 
help requests. HelpHandler's HandleHelp operation forwards the request to the 
successor by default. Subclasses can override this operation to provide help under 
the right circumstances; otherwise they can use the default implementation to 
forward the request. 

Applicability 
Use Chain of Responsibility when 

• more than one object may handle a request, and the handler isn't known a 
priori. The handler should be ascertained automatically. 

• you want to issue a request to one of several objects without specifying the 
receiver explicitly. 

• the set of objects that can handle a request should be specified dynamically. 

Structure 

successor 
Client Handler 

successor 
Client Handler 

HandleRequestf) 

A 
ConcreteHandlerl ConcreteHandler2 

HandleRequestQ HandleRequestQ 

A typical object structure might look like this: 

Participants 
• Handler (HelpHandler) 

- defines an interface for handling requests. 

- (optional) implements the successor link. 
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• ConcreteHandler (PrintButton, PrintDialog) 

- handles requests it is responsible for. 

- can access its successor. 

- if the ConcreteHandler can handle the request, it does so; otherwise it 
forwards the request to its successor. 

• Client 

- initiates the request to a ConcreteHandler object on the chain. 

Collaborations 
• When a client issues a request, the request propagates along the chain until a 

ConcreteHandler object takes responsibility for handling it. 

Consequences 
Chain of Responsibility has the following benefits and liabilities: 

1. Reduced coupling. The pattern frees an object from knowing which other 
object handles a request. An object only has to know that a request will be 
handled "appropriately." Both the receiver and the sender have no explicit 
knowledge of each other, and an object in the chain doesn't have to know 
about the chain's structure. 
As a result, Chain of Responsibility can simplify object interconnections. 
Instead of objects maintaining references to all candidate receivers, they 
keep a single reference to their successor. 

2. Added flexibility in assigning responsibilities to objects. Chain of Responsibility 
gives you added flexibility in distributing responsibilities among objects. 
You can add or change responsibilities for handling a request by adding 
to or otherwise changing the chain at run-time. You can combine this with 
subclassing to specialize handlers statically. 

3. Receipt isn't guaranteed. Since a request has no explicit receiver, there's no 
guarantee it'll be handled—the request can fall off the end of the chain without 
ever being handled. A request can also go unhandled when the chain is not 
configured properly. 

Implementation 
Here are implementation issues to consider in Chain of Responsibility: 

1. Implementing the successor chain. There are two possible ways to implement 
the successor chain: 

(a) Define new links (usually in the Handler, but ConcreteHandlers could 
define them instead). 
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(b) Use existing links. 

Our examples so far define new links, but often you can use existing object 
references to form the successor chain. For example, parent references in a 
part-whole hierarchy can define a part's successor. A widget structure might 
already have such links. Composite (163) discusses parent references in more 
detail. 
Using existing links works well when the links support the chain you need. 
It saves you from defining links explicitly, and it saves space. But if the 
structure doesn't reflect the chain of responsibility your application requires, 
then you'll have to define redundant links. 

2. Connecting successors. If there are no preexisting references for defining a 
chain, then you'll have to introduce them yourself. In that case, the Handler 
not only defines the interface for the requests but usually maintains the 
successor as well. That lets the handler provide a default implementation 
of HandleRequest that forwards the request to the successor (if any). If a 
concrete handler subclass isn't interested in the request, it doesn't have to 
override the forwarding operation, since its default implementation forwards 
unconditionally. 
Here's a HelpHandler base class that maintains a successor link: 

class HelpHandler { 
public: 

HelpHandler(HelpHandler* s) : .successor(s) { } 
virtual void HandleHelp(); 

private: 
HelpHandler* .successor; 

} ; 

void HelpHandler::HandleHelp () { 
if (.successor) { 

_successor->HandleHelp(); 
} 

} 

3. Representing requests. Different options are available for representing requests. 
In the simplest form, the request is a hard-coded operation invocation, as in 
the case of HandleHelp. This is convenient and safe, but you can forward 
only the fixed set of requests that the Handler class defines. 
An alternative is to use a single handler function that takes a request code 
(e.g., an integer constant or a string) as parameter. This supports an open-
ended set of requests. The only requirement is that the sender and receiver 
agree on how the request should be encoded. 
This approach is more flexible, but it requires conditional statements for 
dispatching the request based on their code. Moreover, there's no type-safe 
way to pass parameters, so they must be packed and unpacked manually. 
Obviously this is less safe than invoking an operation directly. 
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To address the parameter-passing problem, we can use separate request 
objects that bundle request parameters. A Request class can represent re
quests explicitly, and new kinds of requests can be defined by subclassing. 
Subclasses can define different parameters. Handlers must know the kind 
of request (that is, which Request subclass they're using) to access these 
parameters. 

To identify the request, Reques t can define an accessor function that returns 
an identifier for the class. Alternatively, the receiver can use run-time type 
information if the implementation languages supports it. 

Here is a sketch of a dispatch function that uses request objects to identify 
requests. A GetKind operation defined in the base Request class identifies 
the kind of request: 

void Handler::HandleRequest (Request* theRequest) { 
switch (theRequest->GetKind()) { 
case Help: 

// cast argument to appropriate type 
HandleHelp((HelpRequest*) theRequest); 
break; 

case Print: 

HandlePrint((PrintRequest*) theRequest); 
I I . . .  
break; 

default: 
I I . . .  
break; 

} 
} 

Subclasses can extend the dispatch by overriding HandleRequest. The 
subclass handles only the requests in which it's interested; other requests 
are forwarded to the parent class. In this way, subclasses effectively ex
tend (rather than override) the HandleRequest operation. For example, 
here's how an ExtendedHandler subclass extends MyHandler's version 
of HandleRequest: 

class ExtendedHandler : public Handler { 
public: 

virtual void HandleRequest(Request* theRequest); 
// ... 

} ; 

void ExtendedHandler::HandleRequest (Request* theRequest) { 
switch (theRequest->GetKind()) { 
case Preview: 

// handle the Preview request 
break; 



CHAIN OF RESPONSIBILITY 229 

default: 
// let Handler handle other requests 
Handler::HandleRequest(theRequest); 

} 
} 

4. Automatic forwarding in Smalltalk. You can use the doesNotUnderstand 
mechanism in Smalltalk to forward requests. Messages that have 
no corresponding methods are trapped in the implementation of 
doesNotUnderstand, which can be overridden to forward the message 
to an object's successor. Thus it isn't necessary to implement forwarding 
manually; the class handles only the request in which it's interested, and it 
relies on doesNotUnderstand to forward all others. 

Sample Code 
The following example illustrates how a chain of responsibility can handle re
quests for an on-line help system like the one described earlier. The help request 
is an explicit operation. We'll use existing parent references in the widget hier
archy to propagate requests between widgets in the chain, and we'll define a 
reference in the Handler class to propagate help requests between nonwidgets in 
the chain. 

The HelpHandler class defines the interface for handling help requests. It main
tains a help topic (which is empty by default) and keeps a reference to its successor 
on the chain of help handlers. The key operation is Handl eHe lp, which subclasses 
override. HasHelp is a convenience operation for checking whether there is an 
associated help topic. 

typedef int Topic; 
const Topic NO_HELP_TOPIC = -1; 

class HelpHandler { 
public: 

HelpHandler(HelpHandler* = 0, Topic = NO_HELP_TOPIC); 
virtual bool HasHelpO; 
virtual void SetHandler(HelpHandler*, Topic); 
virtual void HandleHelp(); 

private: 
HelpHandler* _successor; 
Topic _topic; 

} ; 

HelpHandler::HelpHandler ( 
HelpHandler* h, Topic t 

) : .successor(h), _topic(t) { } 

bool HelpHandler::HasHelp () { 
return _topic != NO_HELP_TOPIC; 

) 
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void HelpHandler::HandleHelp () { 
if (.successor != 0) { 

.successor->HandleHelp(); 
} 

} 

All widgets are subclasses of the Widget abstract class. Widget is a subclass of 
HelpHandler, since all user interface elements can have help associated with 
them. (We could have used a mixin-based implementation just as well.) 

class Widget : public HelpHandler { 
protected: 

Widget(Widget* parent, Topic t = NO.HELP.TOPIC); 
private: 

Widget* .parent; 
> ; 

Widget::Widget (Widget* w, Topic t) : HelpHandler(w, t) { 
.parent = w; 

} 

In our example, a button is the first handler on the chain. The Button class is a 
subclass of Widget. The Button constructor takes two parameters: a reference 
to its enclosing widget and the help topic. 

class Button : public Widget { 
public: 

Button(Widget* d, Topic t = NO.HELP.TOPIC); 

virtual void HandleHelp(); 
// Widget operations that Button overrides... 

} ; 

Button s version of HandleHelp first tests to see if there is a help topic for 
buttons. If the developer hasn't defined one, then the request gets forwarded to 
the successor using the HandleHelp operation in HelpHandler. If there is a 
help topic, then the button displays it, and the search ends. 

Button::Button (Widget* h, Topic t) : Widget(h, t) { } 

void Button::HandleHelp () { 
if (HasHelpO) { 

// offer help on the button 
} else { 

HelpHandler::HandleHelp(); 
} 

} 

Dialog implements a similar scheme, except that its successor is not a widget 
but any help handler. In our application this successor will be an instance of 
Application. 
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class Dialog : public Widget { 
public: 

Dialog(HelpHandler* h, Topic t = NO_HELP_TOPIC); 
virtual void HandleHelp(); 

// Widget operations that Dialog overrides... 
// ... 

} ; 

Dialog::Dialog (HelpHandler* h, Topic t) : Widget(0) { 
SetHandler(h, t); 

} 

void Dialog::HandleHelp () { 
if (HasHelp()) { 

// offer help on the dialog 
} else { 

HelpHandler::HandleHelp(); 
} 

} 

At the end of the chain is an instance of Application. The application is not 
a widget, so Application is subclassed directly from HelpHandler. When a 
help request propagates to this level, the application can supply information on 
the application in general, or it can offer a list of different help topics: 

class Application : public HelpHandler { 
public: 

Application(Topic t) : HelpHandler(0, t) { } 

virtual void HandleHelp(); 
// application-specific operations... 

}; 

void Application::HandleHelp () { 
// show a list of help topics 

} 

The following code creates and connects these objects. Here the dialog concerns 
printing, and so the objects have printing-related topics assigned. 

const Topic PRINT_TOPIC = 1; 
const Topic PAPER_ORIENTATION_TOPIC = 2; 
const Topic APPLICATION_TOPIC = 3; 

Application* application = new Application(APPLICATION_TOPIC); 
Dialog* dialog = new Dialog(application, PRINT_TOPIC); 
Button* button = new Button(dialog, PAPER_ORIENTATION_TOPIC); 

We can invoke the help request by calling Handl eHe lp on any object on the chain. 
To start the search at the button object, just call HandleHelp on it: 
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button->HandleHelp(); 

In this case, the button will handle the request immediately. Note that any 
HelpHandler class could be made the successor of Dialog. Moreover, its suc
cessor could be changed dynamically. So no matter where a dialog is used, you'll 
get the proper context-dependent help information for it. 

Known Uses 
Several class libraries use the Chain of Responsibility pattern to handle user 
events. They use different names for the Handler class, but the idea is the same: 
When the user clicks the mouse or presses a key, an event gets generated and 
passed along the chain. MacApp [App89] and ET++ [WGM88] call it "Event-
Handler," Symantec's TCL library [Sym93b] calls it "Bureaucrat," and NeXT's 
AppKit [Add94] uses the name "Responder." 

The Unidraw framework for graphical editors defines Command objects that 
encapsulate requests to Component and ComponentView objects [VL90]. Com
mands are requests in the sense that a component or component view may in
terpret a command to perform an operation. This corresponds to the "requests 
as objects" approach described in Implementation. Components and component 
views may be structured hierarchically. A component or a component view may 
forward command interpretation to its parent, which may in turn forward it to its 
parent, and so on, thereby forming a chain of responsibility. 

ET++ uses Chain of Responsibility to handle graphical update. A graphical object 
calls the InvalidateRect operation whenever it must update a part of its appear
ance. A graphical object can't handle InvalidateRect by itself, because it doesn't 
know enough about its context. For example, a graphical object can be enclosed 
in objects like Scrollers or Zoomers that transform its coordinate system. That 
means the object might be scrolled or zoomed so that it's partially out of view. 
Therefore the default implementation of InvalidateRect forwards the request to 
the enclosing container object. The last object in the forwarding chain is a Window 
instance. By the time Window receives the request, the invalidation rectangle is 
guaranteed to be transformed properly. The Window handles InvalidateRect by 
notifying the window system interface and requesting an update. 

Related Patterns 
Chain of Responsibility is often applied in conjunction with Composite (163). 
There, a component's parent can act as its successor. 
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COMMAND Object Behavioral 

Intent 
Encapsulate a request as an object, thereby letting you parameterize clients with 
different requests, queue or log requests, and support undoable operations. 

Also Known As A 
Action, Transaction V 

Motivation 
Sometimes it's necessary to issue requests to objects without knowing anything 
about the operation being requested or the receiver of the request. For example, 
user interface toolkits include objects like buttons and menus that carry out a 
request in response to user input. But the toolkit can't implement the request 
explicitly in the button or menu, because only applications that use the toolkit 
know what should be done on which object. As toolkit designers we have no way 
of knowing the receiver of the request or the operations that will carry it out. 

The Command pattern lets toolkit objects make requests of unspecified applica
tion objects by turning the request itself into an object. This object can be stored 
and passed around like other objects. The key to this pattern is an abstract Com
mand class, which declares an interface for executing operations. In the simplest 
form this interface includes an abstract Execute operation. Concrete Command 
subclasses specify a receiver-action pair by storing the receiver as an instance 
variable and by implementing Execute to invoke the request. The receiver has the 
knowledge required to carry out the request. 

Application 

Add(Document) 

Menu 

Add(Menultem) 

Document 

Open() 
Close() 
Cut() 
Copy() 
Paste() 

Menultem Menultem 

Clicked() 9 

O 
command 

Command 

ExecuteQ 

command->Execute() 
I 

</" 

p/O-f t 

1 k&o 

Menus can be implemented easily with Command objects. Each choice in a Menu 
is an instance of a Menultem class. An Application class creates these menus and 
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their menu items along with the rest of the user interface. The Application class 
also keeps track of Document objects that a user has opened. 

The application configures each Menultem with an instance of a concrete Com
mand subclass. When the user selects a Menultem, the Menultem calls Execute 
on its command, and Execute carries out the operation. Menultems don't know 
which subclass of Command they use. Command subclasses store the receiver of 
the request and invoke one or more operations on the receiver. 

For example, PasteCommand supports pasting text from the clipboard into a 
Document. PasteCommand's receiver is the Document object it is supplied upon 
instantiation. The Execute operation invokes Paste on the receiving Document. 

OpenCommand's Execute operation is different: it prompts the user for a docu
ment name, creates a corresponding Document object, adds the document to the 
receiving application, and opens the document. 

Sometimes a Menultem needs to execute a sequence of commands. For example, a 
Menultem for centering a page at normal size could be constructed from a Cen-
terDocumentCommand object and a NormalSizeCommand object. Because it's 
common to string commands together in this way, we can define a MacroCom-
mand class to allow a Menultem to execute an open-ended number of commands. 
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MacroCommand is a concrete Command subclass that simply executes a sequence 
of Commands. MacroCommand has no explicit receiver, because the commands 
it sequences define their own receiver. 

In each of these examples, notice how the Command pattern decouples the object 
that invokes the operation from the one having the knowledge to perform it. This 
gives us a lot of flexibility in designing our user interface. An application can 
provide both a menu and a push button interface to a feature just by making 
the menu and the push button share an instance the same concrete Command 
subclass. We can replace commands dynamically, which would be useful for 
implementing context-sensitive menus. We can also support command scripting 
by composing commands into larger ones. All of this is possible because the object 
that issues a request only needs to know how to issue it; it doesn't need to know 
how the request will be carried out. 

Applicability 
Use the Command pattern when you want to 

• parameterize objects by an action to perform, as Menultem objects did above. 
You can express such parameterization in a procedural language with a 
callback function, that is, a function that's registered somewhere to be called 
at a later point. Commands are an object-oriented replacement for callbacks. 

• specify, queue, and execute requests at different times. A Command object 
can have a lifetime independent of the original request. If the receiver of a 
request can be represented in an address space-independent way, then you 
can transfer a command object for the request to a different process and fulfill 
the request there. 

• support undo. The Command's Execute operation can store state for revers
ing its effects in the command itself. The Command interface must have an 
added Unexecute operation that reverses the effects of a previous call to Ex-
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Implementation 
Consider the following issues when implementing the Command pattern: 

1. How intelligent should a command be? A command can have a wide range of 
abilities. At one extreme it merely defines a binding between a receiver and 
the actions that carry out the request. At the other extreme it implements 
everything itself without delegating to a receiver at all. The latter extreme is 
useful when you want to define commands that are independent of existing 
classes, when no suitable receiver exists, or when a command knows its 
receiver implicitly. For example, a command that creates another application 
window may be just as capable of creating the window as any other object. 
Somewhere in between these extremes are commands that have enough 
knowledge to find their receiver dynamically. 

2. Supporting undo and redo. Commands can support undo and redo capabilities 
if they provide a way to reverse their execution (e.g., an Unexecute or Undo 
operation). A ConcreteCommand class might need to store additional state 
to do so. This state can include 

• the Receiver object, which actually carries out operations in response to 
the request, 

• the arguments to the operation performed on the receiver, and 

• any original values in the receiver that can change as a result of handling 
the request. The receiver must provide operations that let the command 
return the receiver to its prior state. 

To support one level of undo, an application needs to store only the com
mand that was executed last. For multiple-level undo and redo, the applica
tion needs a history list of commands that have been executed, where the 
maximum length of the list determines the number of undo/redo levels. The 
history list stores sequences of commands that have been executed. Travers
ing backward through the list and reverse-executing commands cancels their 
effect; traversing forward and executing commands reexecutes them. 
An undoable command might have to be copied before it can be placed 
on the history list. That's because the command object that carried out the 
original request, say, from a Menultem, will perform other requests at later 
times. Copying is required to distinguish different invocations of the same 
command if its state can vary across invocations. 
For example, a DeleteCommand that deletes selected objects must store dif
ferent sets of objects each time it's executed. Therefore the DeleteCommand 
object must be copied following execution, and the copy is placed on the his
tory list. If the command's state never changes on execution, then copying is 
not required—only a reference to the command need be placed on the history 
ist. Commands that must be copied before being placed on the history list 

act as prototypes (see Prototype (117)). 
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3. Avoiding error accumulation in the undo process. Hysteresis can be a problem in 
ensuring a reliable, semantics-preserving undo/redo mechanism. Errors can 
accumulate as commands are executed, unexecuted, and reexecuted repeat
edly so that an application's state eventually diverges from original values. 
It may be necessary therefore to store more information in the command to 
ensure that objects are restored to their original state. The Memento (283) pat
tern can be applied to give the command access to this information without 
exposing the internals of other objects. 

4. Using C++ templates. For commands that (1) aren't undoable and (2) don't 
require arguments, we can use C++ templates to avoid creating a Command 
subclass for every kind of action and receiver. We show how to do this in the 
Sample Code section. 

Sample Code 
The C++ code shown here sketches the implementation of the Command classes 
in the Motivation section. We'll define OpenCommand, PasteCommand, and 
MacroCommand. First the abstract Command class: 

class Command { 
public: 

virtual "Command!); 

virtual void Execute!) = 0; 
protected: 

Command(); 
) ; 

OpenCommand opens a document whose name is supplied by the user. An 
OpenCommand must be passed an Application object in its constructor. 
AskUser is an implementation routine that prompts the user for the name of 
the document to open. 

class OpenCommand : public Command { 
public: 

OpenCommand(Application*); 

virtual void Execute!); 
protected: 

virtual const char* AskUser!); 
private: 

Application* .application; 
char* .response; 

} ; 

OpenCommand::OpenCommand (Application* a) { 
.application = a; 

} 
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void OpenCommand::Execute () { 
const char* name = AskUserO; 

if (name != 0) { 
Document* document = new Document(name); 
_application->Add(document); 
document->Open(); 

} 
} 

A PasteCommand must be passed a Document object as its receiver. The receiver 
is given as a parameter to PasteCommand's constructor. 

class PasteCommand : public Command { 
public: 

PasteCommand(Document*); 

virtual void Execute(); 
private: 

Document* _document; 
} ; 

PasteCommand::PasteCommand (Document* doc) { 
_document = doc; 

) 

void PasteCommand::Execute () { 
_document->Paste() ; 

} 

For simple commands that aren't undoable and don't require arguments, we 
can use a class template to parameterize the command's receiver. We'll define 
a template subclass SimpleCommand for such commands. SimpleCommand is 
parameterized by the Receiver type and maintains a binding between a receiver 
object and an action stored as a pointer to a member function. 

template cclass Receiver> 
class SimpleCommand : public Command { 
public: 

typedef void (Receiver::* Action)(); 

SimpleCommand(Receiver* r, Action a) : 
.receiver(r), _action(a) { ) 

virtual void Execute(); 
private: 

Action _action; 
Receiver* _receiver; 

} ; 

The constructor stores the receiver and the action in the corresponding instance 
variables. Execute simply applies the action to the receiver. 
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template <class Receiver> 
void SimpleCommand<Receiver>::Execute () { 

(_receiver->*_action)(); 
} 

To create a command that calls Action on an instance of class MyClass, a client 
simply writes 

MyClass* receiver = new MyClass; 
// ... 
Command* aCommand = 

new SimpleCommand<MyClass>(receiver, &MyClass::Action); 

// ... 
aCommand->Execute(); 

Keep in mind that this solution only works for simple commands. More complex 
commands that keep track of not only their receivers but also arguments and/or 
undo state require a Command subclass. 

A MacroCommand manages a sequence of subcommands and provides operations 
for adding and removing subcommands. No explicit receiver is required, because 
the subcommands already define their receiver. 

class MacroCommand : public Command { 
public: 

MacroCommand () ; 
virtual "MacroCommand(); 

virtual void Add(Command*); 
virtual void Remove(Command*); 

virtual void Execute(); 
private: 

List<Command*>* _cmds; 
} ; 

The key to the MacroCommand is its Execute member function. This traverses 
all the subcommands and performs Execute on each of them. 

void MacroCommand::Execute () { 
ListIterator<Command*> i(_cmds); 

for (i. First (); li.IsDoneO; i.NextO) { 
Command* c = i.Currentltem(); 
c->Execute(); 

) 

> 

Note that should the MacroCommand implement an Unexecute operation, then 
its subcommands must be unexecuted in reverse order relative to Execute's im
plementation. 

Finally, MacroCommand must provide operations to manage its subcommands. 
The MacroCommand is also responsible for deleting its subcommands. 
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void MacroCommand::Add (Command* c) { 
_cmds->Append(c) 

} 

void MacroCommand::Remove (Command* c) { 
_cmds->Remove(c); 

} 

Known Uses 
Perhaps the first example of the Command pattern appears in a paper by 
Lieberman [Lie85]. MacApp [App89] popularized the notion of commands for 
implementing undoable operations. ET++ [WGM88], Interviews [LCI+92], and 
Unidraw [VL90] also define classes that follow the Command pattern. Interviews 
defines an Action abstract class that provides command functionality. It also de
fines an ActionCallback template, parameterized by action method, that can in
stantiate command subclasses automatically. 

The THINK class library [Sym93b] also uses commands to support undoable 
actions. Commands in THINK are called "Tasks." Task objects are passed along a 
Chain of Responsibility (223) for consumption. 

Unidraw's command objects are unique in that they can behave like messages. A 
Unidraw command may be sent to another object for interpretation, and the result 
of the interpration varies with the receiving object. Moreover, the receiver may 
delegate the interpretation to another object, typically the receiver's parent in a 
larger structure as in a Chain of Responsibility. The receiver of a Unidraw com
mand is thus computed rather than stored. Unidraw's interpretation mechanism 
depends on run-time type information. 

Coplien describes how to implement functors, objects that are functions, in 
C++ [Cop92]. He achieves a degree of transparency in their use by overload
ing the function call operator (operator ()). The Command pattern is different; 
its focus is on maintaining a binding between a receiver and a function (i.e., action), 
not just maintaining a function. 

Related Patterns 
A Composite (163) can be used to implement MacroCommands. 

A Memento (283) can keep state the command requires to undo its effect. 

A command that must be copied before being placed on the history list acts as a 
Prototype (117). 
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INTERPRETER Class Behavioral 

Intent 
Given a language, define a represention for its grammar along with an interpreter 
that uses the representation to interpret sentences in the language. 

Motivation 
If a particular kind of problem occurs often enough, then it might be worthwhile 
to express instances of the problem as sentences in a simple language. Then you 
can build an interpreter that solves the problem by interpreting these sentences. 

For example, searching for strings that match a pattern is a common problem. 
Regular expressions are a standard language for specifying patterns of strings. 
Rather than building custom algorithms to match each pattern against strings, 
search algorithms could interpret a regular expression that specifies a set of strings 
to match. 

The Interpreter pattern describes how to define a grammar for simple languages, 
represent sentences in the language, and interpret these sentences. In this example, 
the pattern describes how to define a grammar for regular expressions, represent 
a particular regular expression, and how to interpret that regular expression. 

Suppose the following grammar defines the regular expressions: 

expression ::= literal | alternation | sequence | repetition | 
'(' expression ')' 

alternation ::= expression '|' expression 
sequence ::= expression expression 
repetition ::= expression 
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }* 

The symbol expression is the start symbol, and literal is a terminal symbol 
defining simple words. 

The Interpreter pattern uses a class to represent each grammar rule. Symbols on 
the right-hand side of the rule are instance variables of these classes. The grammar 
above is represented by five classes: an abstract class RegularExpression and its 
four subclasses LiteralExpression, AlternationExpression, SequenceExpression, 
and RepetitionExpression. The last three classes define variables that hold subex
pressions. 
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Every regular expression defined by this grammar is represented by an abstract 
syntax tree made up of instances of these classes. For example, the abstract syntax 
tree 

/ N 
aSequenceExpresslon 

expression 1 
expression2 

aLiteralExpression 

'raining' 

represents the regular expression 

raining & (dogs | cats) * 

We can create an interpreter for these regular expressions by defining the Interpret 
operation on each subclass of RegularExpression. Interpret takes as an argument 
the context in which to interpret the expression. The context contains the input 
string and information on how much of it has been matched so far. Each subclass 
of RegularExpression implements Interpret to match the next part of the input 
string based on the current context. For example, 
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• LiteralExpression will check if the input matches the literal it defines, 

• AlternationExpression will check if the input matches any of its alternatives, 

• RepetitionExpression will check if the input has multiple copies of expression 
it repeats, 

and so on. 

Applicability 
Use the Interpreter pattern when there is a language to interpret, and you can 
represent statements in the language as abstract syntax trees. The Interpreter 
pattern works best when 

• the grammar is simple. For complex grammars, the class hierarchy for the 
grammar becomes large and unmanageable. Tools such as parser generators 
are a better alternative in such cases. They can interpret expressions without 
building abstract syntax trees, which can save space and possibly time. 

• efficiency is not a critical concern. The most efficient interpreters are usually 
not implemented by interpreting parse trees directly but by first translating 
them into another form. For example, regular expressions are often trans
formed into state machines. But even then, the translator can be implemented 
by the Interpreter pattern, so the pattern is still applicable. 

Structure 

Participants 
• AbstractExpression (RegularExpression) 

- declares an abstract Interpret operation that is common to all nodes in the 
abstract syntax tree. 
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• TerminalExpression (LiteralExpression) 

- implements an Interpret operation associated with terminal symbols in the 
grammar. 

- an instance is required for every terminal symbol in a sentence. 

• NonterminalExpression (AlternationExpression, RepetitionExpression, Se-
quenceExpressions) 

- one such class is required for every rule R Ri R2 ... Rn in the grammar. 

- maintains instance variables of type AbstractExpression for each of the 
symbols Rx through #n. 

- implements an Interpret operation for nonterminal symbols in the gram
mar. Interpret typically calls itself recursively on the variables representing 
Ri through Rn. 

• Context 

- contains information that's global to the interpreter. 

• Client 

- builds (or is given) an abstract syntax tree representing a particular sen
tence in the language that the grammar defines. The abstract syntax tree is 
assembled from instances of the NonterminalExpression and TerminalEx
pression classes. 

- invokes the Interpret operation. 

Collaborations 
• The client builds (or is given) the sentence as an abstract syntax tree of Nonter

minalExpression and TerminalExpression instances. Then the client initializes 
the context and invokes the Interpret operation. 

• Each NonterminalExpression node defines Interpret in terms of Interpret on 
each subexpression. The Interpret operation of each TerminalExpression de
fines the base case in the recursion. 

• The Interpret operations at each node use the context to store and access the 
state of the interpreter. 

Consequences 
The Interpreter pattern has the following benefits and liabilities: 

1. It's easy to change and extend the grammar. Because the pattern uses classes 
to represent grammar rules, you can use inheritance to change or extend 
the grammar. Existing expressions can be modified incrementally, and new 
expressions can be defined as variations on old ones. 
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2. Implementing the grammar is easy, too. Classes defining nodes in the abstract 
syntax tree have similar implementations. These classes are easy to write, and 
often their generation can be automated with a compiler or parser generator. 

3. Complex grammars are hard to maintain. The Interpreter pattern defines at least 
one class for every rule in the grammar (grammar rules defined using BNF 
may require multiple classes). Hence grammars containing many rules can 
be hard to manage and maintain. Other design patterns can be applied to 
mitigate the problem (see Implementation). But when the grammar is very 
complex, other techniques such as parser or compiler generators are more 
appropriate. 

4. Adding new ways to interpret expressions. The Interpreter pattern makes it 
easier to evaluate an expression in a new way. For example, you can support 
pretty printing or type-checking an expression by defining a new operation 
on the expression classes. If you keep creating new ways of interpreting an 
expression, then consider using the Visitor (331) pattern to avoid changing 
the grammar classes. 

Implementation 
The Interpreter and Composite (163) patterns share many implementation issues. 
The following issues are specific to Interpreter: 

1. Creating the abstract syntax tree. The Interpreter pattern doesn't explain how to 
create an abstract syntax tree. In other words, it doesn't address parsing. The 
abstract syntax tree can be created by a table-driven parser, by a hand-crafted 
(usually recursive descent) parser, or directly by the client. 

2. Defining the Interpret operation. You don't have to define the Interpret oper
ation in the expression classes. If it's common to create a new interpreter, 
then it's better to use the Visitor (331) pattern to put Interpret in a separate 
"visitor" object. For example, a grammar for a programming language will 
have many operations on abstract syntax trees, such as as type-checking, op
timization, code generation, and so on. It will be more likely to use a visitor 
to avoid defining these operations on every grammar class. 

3. Sharing terminal symbols with the Flyweight pattern. Grammars whose sentences 
contain many occurrences of a terminal symbol might benefit from sharing 
a single copy of that symbol. Grammars for computer programs are good 
examples—each program variable will appear in many places throughout the 
code. In the Motivation example, a sentence can have the terminal symbol 
dog (modeled by the LiteralExpression class) appearing many times. 
Terminal nodes generally don't store information about their position in the 
abstract syntax tree. Parent nodes pass them whatever context they need 
during interpretation. Hence there is a distinction between shared (intrinsic) 
state and passed-in (extrinsic) state, and the Flyweight (195) pattern applies. 
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For example, each instance of LiteralExpression for dog receives a context 
containing the substring matched so far. And every such LiteralExpression 
does the same thing in its Interpret operation—it checks whether the next 
part of the input contains a dog—no matter where the instance appears in 
the tree. 

Sample Code 
Here are two examples. The first is a complete example in Smalltalk for checking 
whether a sequence matches a regular expression. The second is a C++ program 
for evaluating Boolean expressions. 

The regular expression matcher tests whether a string is in the language defined 
by the regular expression. The regular expression is defined by the following 
grammar: 

expression ::= literal | alternation | sequence | repetition | 
'(' expression ')' 

alternation ::= expression '|' expression 
sequence ::= expression '&' expression 
repetition ::= expression 'repeat' 
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }* 

This grammar is a slight modification of the Motivation example. We changed 
the concrete syntax of regular expressions a little, because symbol can't be 
a postfix operation in Smalltalk. So we use repeat instead. For example, the 
regular expression 

(('dog ' | 'cat ') repeat & 'weather') 

matches the input string "dog dog cat weather". 

To implement the matcher, we define the five classes described on 
page 243. The class SequenceExpression has instance variables expres-
sionl and expression2 for its children in the abstract syntax tree. 
AlternationExpression stores its alternatives in the instance variables 
alternativel and alternative2, whileRepetitionExpressionholds the 
expression it repeats in its repetition instance variable. LiteralExpression has 
a components instance variable that holds a list of objects (probably characters). 
These represent the literal string that must match the input sequence. 

The match: operation implements an interpreter for the regular expression. 
Each of the classes defining the abstract syntax tree implements this operation. It 
takes inputState as an argument representing the current state of the matching 
process, having read part of the input string. 

This current state is characterized by a set of input streams representing the set 
of inputs that the regular expression could have accepted so far. (This is roughly 
equivalent to recording all states that the equivalent finite state automata would 
be in, having recognized the input stream to this point). 
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The current state is most important to the repeat operation. For example, if the 
regular expression were 

'a' repeat 

then the interpreter could match "a", "aa", "aaa", and so on. If it were 

'a' repeat & 'be' 

then it could match "abc", "aabc", "aaabc", and so on. But if the regular ex
pression were 

'a' repeat & 'abc' 

then matching the input "aabc" against the subexpression "' a' repeat" would 
yield two input streams, one having matched one character of the input, and the 
other having matched two characters. Only the stream that has accepted one 
character will match the remaining "abc". 

Now we consider the definitions of match: for each class defining the regu
lar expression. The definition for SequenceExpression matches each of its 
subexpressions in sequence. Usually it will eliminate input streams from its 
inputState. 

match: inputState 
* expression2 match: (expressionl match: inputState) . 

An AlternationExpression will return a state that consists of the 
union of states from either alternative. The definition of match: for 
AlternationExpression is 

match: inputState 
I finalState I 
finalState := alternativel match: inputState. 
finalState addAll: (alternative2 match: inputState). 
finalState 

The match: operation for Repet it ionExpression tries to find as many states 
that could match as possible: 

match: inputState 
I aState finalState I 
aState := inputState. 
finalState := inputState copy. 
[aState isEmpty] 

whileFalse: 
[aState := repetition match: aState. 
finalState addAll: aState]. 

finalState 
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Its output state usually contains more states than its input state, because 
a RepetitionExpression can match one, two, or many occurrences of 
repetition on the input state. The output states represent all these possibil
ities, allowing subsequent elements of the regular expression to decide which 
state is the correct one. 

Finally, the definition of match: for LiteralExpression tries to match its 
components against each possible input stream. It keeps only those input streams 
that have a match: 

match: inputState 
| finalState tStream | 
finalState := Set new. 
inputState 

do: 
[:stream | tStream := stream copy. 

(tStream nextAvailable: 
components size 

) = components 
ifTrue: [finalState add: tStream] 

] • 
finalState 

The nextAvailable: message advances the input stream. This is the only 
match: operation that advances the stream. Notice how the state that's returned 
contains a copy of the input stream, thereby ensuring that matching a literal 
never changes the input stream. This is important because each alternative of an 
AlternationExpression should see identical copies of the input stream. 

Now that we've defined the classes that make up an abstract syntax tree, we can 
describe how to build it. Rather than write a parser for regular expressions, we'll 
define some operations on the RegularExpression classes so that evaluating 
a Smalltalk expression will produce an abstract syntax tree for the corresponding 
regular expression. That lets us use the built-in Smalltalk compiler as if it's a parser 
for regular expressions. 

To build the abstract syntax tree, we'll need to define " |", "repeat", and 
as operations on RegularExpression. These operations are defined in class 
RegularExpression like this: 

& anNode 
SequenceExpression new 

expressionl: self expression2: anNode asRExp 

repeat 
RepetitionExpression new repetition: self 
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| anNode 
" AlternationExpression new 
alternativel: self alternative2: anNode asRExp 

asRExp 
' self 

The asRExp operation will convert literals into RegularExpressions. These 
operations are defined in class String: 

& anNode 
" SequenceExpression new 

expressionl: self asRExp expression2: anNode asRExp 

repeat 
" RepetitionExpression new repetition: self 

| anNode 
" AlternationExpression new 

alternativel: self asRExp alternative2: anNode asRExp 

asRExp 
A LiteralExpression new components: self 

If we defined these operations higher up in the class hierarchy (Sequenceable-
Collection in Smalltalk-80, IndexedCollection in Smalltalk/V), then they 
would also be defined for classes such as Array and Order edCol lection. This 
would let regular expressions match sequences of any kind of object. 

The second example is a system for manipulating and evaluating Boolean expres
sions implemented in C++. The terminal symbols in this language are Boolean 
variables, that is, the constants true and false. Nonterminal symbols represent 
expressions containing the operators and, or, and not. The grammar is defined 
as follows:1 

BooleanExp ::= VariableExp | Constant | OrExp | AndExp | NotExp | 
' ( '  B o o l e a n E x p  ' ) '  

AndExp ::= BooleanExp 'and' BooleanExp 
OrExp ::= BooleanExp 'or' BooleanExp 
NotExp ::= 'not' BooleanExp 
Constant ::= 'true' | 'false' 
VariableExp ::= 'A' j  ' B '  |  . . .  |  ' X '  |  ' Y '  |  ' Z '  

We define two operations on Boolean expressions. The first, Evaluate, evaluates 
a Boolean expression in a context that assigns a true or false value to each variable. 
The second operation, Replace, produces a new Boolean expression by replacing 
a variable with an expression. Replace shows how the Interpreter pattern can 
be used for more than just evaluating expressions. In this case, it manipulates the 
expression itself. 

1 For simplicity, we ignore operator precedence and assume it's the responsibility of whichever object 
constructs the syntax tree. 
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We give details of just the BooleanExp, VariableExp, and AndExp classes 
here. Classes OrExp and NotExp are similar to AndExp. The Constant class 
represents the Boolean constants. 

BooleanExp defines the interface for all classes that define a Boolean expression: 

class BooleanExp { 
public: 

BooleanExp(); 
virtual "BooleanExp(); 

virtual bool Evaluate(Contexts) = 0; 
virtual BooleanExp* Replace(const char*, BooleanExpS) = 0; 
virtual BooleanExp* CopyO const = 0; 

) ; 

The class Context defines a mapping from variables to Boolean values, which we 
represent with the C++ constants true and false. Context has the following 
interface: 

class Context { 
public: 

bool Lookup(const char*) const; 
void Assign(VariableExp*, bool); 

} ; 

A VariableExp represents a named variable: 

class VariableExp : public BooleanExp { 
public: 

VariableExp(const char*); 
virtual "VariableExp(); 

virtual bool Evaluate(Contexts); 
virtual BooleanExp* Replace(const char*, BooleanExpS); 
virtual BooleanExp* CopyO const; 

private: 
char* _name; 

} ; 

The constructor takes the variable's name as an argument: 

VariableExp::VariableExp (const char* name) { 
_name = strdup(name); 

} 

Evaluating a variable returns its value in the current context. 

bool VariableExp:-.Evaluate (Contexts aContext) { 
return aContext.Lookup(_name); 

) 
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Copying a variable returns a new VariableExp: 

BooleanExp* VariableExp::Copy () const { 
return new VariableExp(_name); 

} 

To replace a variable with an expression, we check to see if the variable has the 
same name as the one it is passed as an argument: 

BooleanExp* VariableExp::Replace ( 
const char* name, BooleanExpS exp 

) { 

if (strcmp(name, _name) != 0) { 
return exp.Copy(); 

} else { 
return new VariableExp(_name); 

) 
} 

An AndExp represents an expression made by ANDing two Boolean expressions 
together. 

class AndExp : public BooleanExp { 
public: 

AndExp(BooleanExp*, BooleanExp*); 
virtual ~AndExp(); 

virtual bool Evaluate(Contexts); 
virtual BooleanExp* Replace(const char*, BooleanExpS); 
virtual BooleanExp* Copy() const; 

private: 
BooleanExp* _operandl; 
BooleanExp* _operand2; 

AndExp::AndExp (BooleanExp* opl, BooleanExp* op2) { 
_operandl = opl; 
_operand2 = op2 ; 

} 

Evaluating an AndExp evaluates its operands and returns the logical "and" of the 
results. 

bool AndExp::Evaluate (Contexts aContext) { 
return 

_operandl->Evaluate(aContext) && 
_operand2->Evaluate(aContext); 

} 

An AndExp implements Copy and Replace by making recursive calls on its 
operands: 
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BooleanExp* AndExp::Copy () const { 
return 

new AndExp(_operandl->Copy(), _operand2->Copy()); 
} 

BooleanExp* AndExp::Replace (const char* name, BooleanExp& exp) { 
return 

new AndExp( 
_operandl->Replace(name, exp), 
_operand2->Rep1ac e(name, exp) 

) ; 
} 

Now we can define the Boolean expression 

(true and x) or (y and (not x)) 

and evaluate it for a given assignment of true or false to the variables x and 
y: 

BooleanExp* expression; 
Context context; 

VariableExp* x = new VariableExp("X"); 
VariableExp* y = new VariableExp("Y"); 

expression = new OrExp( 
new AndExp(new Constant(true), x), 
new AndExp(y, new NotExp(x)) 

> ;  

context.Assign(x, false); 
context.Assign(y, true); 

bool result = expression->Evaluate(context); 

The expression evaluates to true for this assignment to x and y. We can evaluate 
the expression with a different assignment to the variables simply by changing 
the context. 
Finally, we can replace the variable y with a new expression and then reevaluate 
it: 

BooleanExp* replacement; 
VariableExp* z = new VariableExp("Z"); 

replacement = new NotExp(z); 
expression->Replace("Y", *replacement); 

context.Assign(z, true); 

result = expression->Evaluate(context); 
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This example illustrates an important point about the Interpreter pattern: many 
kinds of operations can "interpret" a sentence. Of the three operations defined 
for BooleanExp, Evaluate fits our idea of what an interpreter should do most 
closely—that is, it interprets a program or expression and returns a simple result. 

However, Replace can be viewed as an interpreter as well. It's an interpreter 
whose context is the name of the variable being replaced along with the expression 
that replaces it, and whose result is a new expression. Even Copy can be thought 
of as an interpreter with an empty context. It may seem a little strange to consider 
Replace and Copy to be interpreters, because these are just basic operations 
on trees. The examples in Visitor (331) illustrate how all three operations can be 
refactored into a separate "interpreter" visitor, thus showing that the similarity is 
deep. 
The Interpreter pattern is more than just an operation distributed over a class 
hierarchy that uses the Composite (163) pattern. We consider Evaluate an in
terpreter because we think of the BooleanExp class hierarchy as representing a 
language. Given a similar class hierarchy for representing automotive part assem
blies, it's unlikely we'd consider operations like Weight and Copy as interpreters 
even though they are distributed over a class hierarchy that uses the Compos
ite pattern—we just don't think of automotive parts as a language. It's a matter 
of perspective; if we started publishing grammars of automotive parts, then we 
could consider operations on those parts to be ways of interpreting the language. 

Known Uses 
The Interpreter pattern is widely used in compilers implemented with object-
oriented languages, as the Smalltalk compilers are. SPECTalk uses the pattern to 
interpret descriptions of input file formats [Sza92]. The QOCA constraint-solving 
toolkit uses it to evaluate constraints [HHMV92]. 

Considered in its most general form (i.e., an operation distributed over a class 
hierarchy based on the Composite pattern), nearly every use of the Composite 
pattern will also contain the Interpreter pattern. But the Interpreter pattern should 
be reserved for those cases in which you want to think of the class hierarchy as 
defining a language. 

Related Patterns 
Composite (163): The abstract syntax tree is an instance of the Composite pattern. 

Flyweight (195) shows how to share terminal symbols within the abstract syntax 
tree. 

Iterator (257): The interpreter can use an Iterator to traverse the structure. 

Visitor (331) can be used to maintain the behavior in each node in the abstract 
syntax tree in one class. 
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ITERATOR Object Behavioral 

Intent 
Provide a way to access the elements of an aggregate object sequentially without 
exposing its underlying representation. 

Also Known As 
Cursor 

VIotivation 
An aggregate object such as a list should give you a way to access its elements 
without exposing its internal structure. Moreover, you might want to traverse the 
list in different ways, depending on what you want to accomplish. But you prob
ably don't want to bloat the List interface with operations for different traversals, 
even if you could anticipate the ones we'll need. You might also need to have 
more than one traversal pending on the same list. 
The Iterator pattern lets you do all this. The key idea in this pattern is to take the 
responsibility for access and traversal out of the list object and put it into an iterator 
object. The Iterator class defines an interface for accessing the list's elements. An 
iterator object is responsible for keeping track of the current element; that is, it 
knows which elements have been traversed already. 
For example, a List class would call for a Listlterator with the following relation
ship between them: 

List 
list Listlterator List Listlterator 

Count() FirstQ 

Append(Element) Next() 

Remove(Element) IsDoneQ 
Currentltem() 

index 

Before you can instantiate Listlterator, you must supply the List to traverse. Once 
you have the Listlterator instance, you can access the list's elements sequentially. 
The Currentltem operation returns the current element in the list, First initializes 
the current element to the first element, Next advances the current element to 
the next element, and IsDone tests whether we've advanced beyond the last 
element—that is, we're finished with the traversal. 
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Separating the traversal mechanism from the List object lets us define iterators 
for different traversal policies without enumerating them in the List interface. For 
example, FilteringListlterator might provide access only to those elements that 
satisfy specific filtering constraints. 

Notice that the iterator and the list are coupled, and the client must know that 
it is a list that's traversed as opposed to some other aggregate structure. Hence 
the client commits to a particular aggregate structure. It would be better if we 
could change the aggregate class without changing client code. We can do this by 
generalizing the iterator concept to support polymorphic iteration. 

As an example, let's assume that we also have a SkipList implementation of a 
list. A skiplist [Pug90j is a probabilistic data structure with characteristics similar 
to balanced trees. We want to be able to write code that works for both List and 
SkipList objects. 

We define an AbstractList class that provides a common interface for manipulating 
lists. Similarly, we need an abstract Iterator class that defines a common iteration 
interface. Then we can define concrete Iterator subclasses for the different list 
implementations. As a result, the iteration mechanism becomes independent of 
concrete aggregate classes. 

The remaining problem is how to create the iterator. Since we want to write code 
that s independent of the concrete List subclasses, we cannot simply instantiate 
a specific class. Instead, we make the list objects responsible for creating their 
corresponding iterator. This requires an operation like Createlterator through 
which clients request an iterator object. 

Createlterator is an example of a factory method (see Factory Method (107)). We 
use it here to let a client ask a list object for the appropriate iterator. The Factory 
Method approach give rise to two class hierarchies, one for lists and another for 
iterators. The Createlterator factory method "connects" the two hierarchies. 
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A. p plicability 
Use the Iterator pattern 

• to access an aggregate object's contents without exposing its internal repre
sentation. 

• to support multiple traversals of aggregate objects. 

• to provide a uniform interface for traversing different aggregate structures 
(that is, to support polymorphic iteration). 

S tincture 

Participants 
• Iterator 

- defines an interface for accessing and traversing elements. 

• Concretelterator 

- implements the Iterator interface. 

- keeps track of the current position in the traversal of the aggregate. 

• Aggregate 

- defines an interface for creating an Iterator object. 

• ConcreteAggregate 

- implements the Iterator creation interface to return an instance of the 
proper Concretelterator. 
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Collaborations 
• A Concretelterator keeps track of the current object in the aggregate and can 

compute the succeeding object in the traversal. 

Consequences 
The Iterator pattern has three important consequences: 

1. It supports variations in the traversal of an aggregate. Complex aggregates may 
be traversed in many ways. For example, code generation and semantic 
checking involve traversing parse trees. Code generation may traverse the 
parse tree inorder or preorder. Iterators make it easy to change the traversal 
algorithm: Just replace the iterator instance with a different one. You can also 
define Iterator subclasses to support new traversals. 

2. Iterators simplify the Aggregate interface. Iterator's traversal interface obviates 
the need for a similar interface in Aggregate, thereby simplifying the aggre
gate's interface. 

3. More than one traversal can be pending on an aggregate. An iterator keeps track 
of its own traversal state. Therefore you can have more than one traversal in 
progress at once. 

Implementation 
Iterator has many implementation variants and alternatives. Some important ones 
follow. The trade-offs often depend on the control structures your language pro
vides. Some languages (CLU [LG86], for example) even support this pattern di
rectly. 

1. Who controls the iteration? A fundamental issue is deciding which party con
trols the iteration, the iterator or the client that uses the iterator. When the 
client controls the iteration, the iterator is called an external iterator, and 
when the iterator controls it, the iterator is an internal iterator.2 Clients that 
use an external iterator must advance the traversal and request the next el
ement explicitly from the iterator. In contrast, the client hands an internal 
iterator an operation to perform, and the iterator applies that operation to 
every element in the aggregate. 

External iterators are more flexible than internal iterators. It's easy to compare 
two collections for equality with an external iterator, for example, but it's 
practically impossible with internal iterators. Internal iterators are especially 
weak in a language like C++ that does not provide anonymous functions, 
closures, or continuations like Smalltalk and CLOS. But on the other hand, 

2Booch refers to external and internal iterators as active and passive iterators, respectively [Boo94]. The 
terms active and passive" describe the role of the client, not the level of activity in the iterator. 
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internal iterators are easier to use, because they define the iteration logic for 
you. 

2. Who defines the traversal algorithm ? The iterator is not the only place where the 
traversal algorithm can be defined. The aggregate might define the traversal 
algorithm and use the iterator to store just the state of the iteration. We call 
this kind of iterator a cursor, since it merely points to the current position in 
the aggregate. A client will invoke the Next operation on the aggregate with 
the cursor as an argument, and the Next operation will change the state of 
the cursor.3 

If the iterator is responsible for the traversal algorithm, then it's easy to use 
different iteration algorithms on the same aggregate, and it can also be easier 
to reuse the same algorithm on different aggregates. On the other hand, 
the traversal algorithm might need to access the private variables of the 
aggregate. If so, putting the traversal algorithm in the iterator violates the 
encapsulation of the aggregate. 

3. How robust is the iterator? It can be dangerous to modify an aggregate while 
you're traversing it. If elements are added or deleted from the aggregate, 
you might end up accessing an element twice or missing it completely. A 
simple solution is to copy the aggregate and traverse the copy, but that's too 
expensive to do in general. 
A robust iterator ensures that insertions and removals won't interfere with 
traversal, and it does it without copying the aggregate. There are many ways 
to implement robust iterators. Most rely on registering the iterator with the 
aggregate. On insertion or removal, the aggregate either adjusts the internal 
state of iterators it has produced, or it maintains information internally to 
ensure proper traversal. 
Kofler provides a good discussion of how robust iterators are implemented 
in ET++ [Kof93]. Murray discusses the implementation of robust iterators 
for the USL StandardComponents' List class [Mur93]. 

4. Additional Iterator operations. The minimal interface to Iterator consists of 
the operations First, Next, IsDone, and Currentltem.4 Some additional op
erations might prove useful. For example, ordered aggregates can have a 
Previous operation that positions the iterator to the previous element. A 
SkipTo operation is useful for sorted or indexed collections. SkipTo positions 
the iterator to an object matching specific criteria. 

5. Using polymorphic iterators in C++. Polymorphic iterators have their cost. They 
require the iterator object to be allocated dynamically by a factory method. 
Hence they should be used only when there's a need for polymorphism. 
Otherwise use concrete iterators, which can be allocated on the stack. 

3 Cursors are a simple example of the Memento (283) pattern and share many of its implementation issues. 
4 We can make this interface even smaller by merging Next, IsDone, and Currentltem into a single operation 

r a t advances to the next object and returns it. If the traversal is finished, then this operation returns a special 
: ue (0, for instance) that marks the end of the iteration. 



BEHAVIORAL PATTERNS CHAPTER 5 

Polymorphic iterators have another drawback: the client is responsible for 
deleting them. This is error-prone, because it's easy to forget to free a heap-
allocated iterator object when you're finished with it. That's especially likely 
when there are multiple exit points in an operation. And if an exception is 
triggered, the iterator object will never be freed. 
The Proxy (207) pattern provides a remedy. We can use a stack-allocated 
proxy as a stand-in for the real iterator. The proxy deletes the iterator in 
its destructor. Thus when the proxy goes out of scope, the real iterator will 
get deallocated along with it. The proxy ensures proper cleanup, even in 
the face of exceptions. This is an application of the well-known C++ tech
nique "resource allocation is initialization" [ES90]. The Sample Code gives 
an example. 

6. Iterators may have privileged access. An iterator can be viewed as an extension 
of the aggregate that created it. The iterator and the aggregate are tightly cou
pled. We can express this close relationship in C++ by making the iterator a 
friend of its aggregate. Then you don't need to define aggregate operations 
whose sole purpose is to let iterators implement traversal efficiently. 
However, such privileged access can make defining new traversals difficult, 
since it'll require changing the aggregate interface to add another friend. 
To avoid this problem, the Iterator class can include protected operations 
for accessing important but publicly unavailable members of the aggregate. 
Iterator subclasses (and only Iterator subclasses) may use these protected 
operations to gain privileged access to the aggregate. 

7. Iterators for composites. External iterators can be difficult to implement over 
recursive aggregate structures like those in the Composite (163) pattern, be
cause a position in the structure may span many levels of nested aggregates. 
Therefore an external iterator has to store a path through the Composite to 
keep track of the current object. Sometimes it's easier just to use an internal 
iterator. It can record the current position simply by calling itself recursively, 
thereby storing the path implicitly in the call stack. 
If the nodes in a Composite have an interface for moving from a node to 
its siblings, parents, and children, then a cursor-based iterator may offer a 
better alternative. The cursor only needs to keep track of the current node; it 
can rely on the node interface to traverse the Composite. 
Composites often need to be traversed in more than one way. Preorder, 
postorder, inorder, and breadth-first traversals are common. You can support 
each kind of traversal with a different class of iterator. 

8. Null iterators. A Nulllterator is a degenerate iterator that's helpful for han
dling boundary conditions. By definition, a Nulllterator is always done with 
traversal; that is, its IsDone operation always evaluates to true. 
Nulllterator can make traversing tree-structured aggregates (like Compos
ites) easier. At each point in the traversal, we ask the current element for 
an iterator for its children. Aggregate elements return a concrete iterator 
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as usual. But leaf elements return an instance of Nulllterator. That lets us 
implement traversal over the entire structure in a uniform way. 

Saxriple Code 
We'll look at the implementation of a simple List class, which is part of our 
foundation library (Appendix C). We'll show two Iterator implementations, one 
for traversing the List in front-to-back order, and another for traversing back-to-
front (the foundation library supports only the first one). Then we show how to 
use these iterators and how to avoid committing to a particular implementation. 
After that, we change the design to make sure iterators get deleted properly. 
The last example illustrates an internal iterator and compares it to its external 
counterpart. 

1. List and Iterator interfaces. First let's look at the part of the List interface that's 
relevant to implementing iterators. Refer to Appendix C for the full interface. 

template cclass Item> 
class List { 
public: 

List(long size = DEFAULT_LIST_CAPACITY); 

long Count() const; 
Item& Get(long index) const; 
I I . . .  

} ; 

The List class provides a reasonably efficient way to support iteration 
through its public interface. It's sufficient to implement both traversals. So 
there's no need to give iterators privileged access to the underlying data 
structure; that is, the iterator classes are not friends of List. To enable trans
parent use of the different traversals we define an abstract Iterator class, 
which defines the iterator interface. 

template cclass Item> 
class Iterator { 
public: 

virtual void First() = 0; 
virtual void Next() = 0; 
virtual bool IsDoneO const = 0; 
virtual Item Currentltem() const = 0; 

protected: 
Iterator() ; 

} ;  

2. Iterator subclass implementations. Listlterator is a subclass of Iterator. 
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template cclass Item> 
class Listlterator : public Iterator<Item> { 
public: 

Listlterator(const List<Item>* aList); 
virtual void First(); 
virtual void Next(); 
virtual bool IsDoneO const; 
virtual Item Currentltem() const; 

private: 
const List<Item>* _list; 
long _current; 

} ; 

The implementation of Li s 111 era tor is straightforward. It stores the List 
along with an index .current into the list: 

template <class Item> 
ListIterator<Item>::Listlterator ( 

const List<Item>* aList 
) : _list(aList), _current(0) { 
} 

First positions the iterator to the first element: 

template cclass Item> 
void ListIterator<Item>::First () { 

_current = 0; 
} 

Next advances the current element: 

template cclass Item> 
void ListIteratorcltem>::Next () { 

_current++; 
} 

Is Done checks whether the index refers to an element within the List: 

template cclass Item> 
bool ListIteratorcltem>::IsDone () const { 

return _current >= _list->Count(); 
} 

Finally, Currentltem returns the item at the current index. If the iteration 
has already terminated, then we throw an I teratorOutOf Bounds excep
tion: 

template cclass Item> 
Item ListIteratorcltem>::CurrentItem () const { 

if (IsDoneO) { 
throw IteratorOutOfBounds; 

} 

return _list->Get(_current); 
} 
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The implementation of ReverseListlterator is identical, except its First op
eration positions .current to the end of the list, and Next decrements 
.current toward the first item. 

3. Using the iterators. Let's assume we have a List of Employee objects, 
and we would like to print all the contained employees. The Employee 
class supports this with a Print operation. To print the list, we define a 
PrintEmployees operation that takes an iterator as an argument. It uses 
the iterator to traverse and print the list. 

void PrintEmployees (Iterator<Employee*>& i) { 
for (i.First (); !i.IsDone(); i.NextO) { 

i.Currentltem()->Print(); 
} 

) 

Since we have iterators for both back-to-front and front-to-back traversals, 
we can reuse this operation to print the employees in both orders. 

List<Employee*>* employees; 
// ... 
ListIterator<Employee*> forward(employees); 
ReverseListIterator<Employee*> backward(employees); 

PrintEmployees(forward); 
PrintEmployees(backward); 

4. Avoiding commitment to a specific list implementation. Let's consider how a 
skiplist variation of List would affect our iteration code. A SkipList 
subclass of List must provide a SkipListlterator that imple
ments the Iterator interface. Internally, the SkipListlterator has 
to keep more than just an index to do the iteration efficiently. But 
since SkipListlterator conforms to the Iterator interface, the 
PrintEmployees operation can also be used when the employees are stored 
in a SkipList object. 

SkipList<Employee*>* employees; 
I I . . .  

SkipListIterator<Employee*> iterator(employees); 
PrintEmployees(iterator); 

Although this approach works, it would be better if we didn't have to commit 
to a specific List implementation, namely SkipList. We can introduce an 
Abstract Li st class to standardize the list interface for different list imple
mentations. List and SkipList become subclasses of AbstractList. 
To enable polymorphic iteration, AbstractList defines a factory method 
Createlterator, which subclasses override to return their corresponding 
iterator: 
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template <class Item> 
class AbstractList { 
public: 

virtual Iterator<Item>* Createlterator() const = 0; 
// ... 

} ; 

An alternative would be to define a general mixin class Traversable that 
defines the interface for creating an iterator. Aggregate classes can mix in 
Traversable to support polymorphic iteration. 
List overrides Createlterator to return a Listlterator object: 

template cclass Item> 
Iterator<Item>* List<Item>::Createlterator () const { 

return new ListIterator<Item>(this); 
} 

Now we're in a position to write the code for printing the employees inde
pendent of a concrete representation. 

/ / w e  k n o w  o n l y  t h a t  w e  h a v e  a n  A b s t r a c t L i s t  
AbstractList<Employee*>* employees; 
I I  . . .  

Iterator<Employee*>* iterator = employees->CreateIterator(); 
PrintEmployees(*iterator); 
delete iterator; 

5. Making sure iterators get deleted. Notice that Createlterator returns a 
newly allocated iterator object. We're responsible for deleting it. If we forget, 
then we've created a storage leak. To make life easier for clients, we'll provide 
an IteratorPtr that acts as a proxy for an iterator. It takes care of cleaning 
up the Iterator object when it goes out of scope. 
IteratorPtr is always allocated on the stack.5 C++ automatically takes 
care of calling its destructor, which deletes the real iterator. IteratorPtr 
overloads both operator-> and operator* in such a way that an 
IteratorPtr can be treated just like a pointer to an iterator. The mem
bers of IteratorPtr are all implemented inline; thus they can incur no 
overhead. 

template <class Item> 
class IteratorPtr { 
public: 

IteratorPtr(Iterator<Item>* i): _i(i) { } 
""IteratorPtr () { delete _i; } 

B You can ensure this at compile-time just by declaring private new and delete operators. An accompa
nying implementation isn't needed. 
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Iterator<Item>* operator->() { return _i; } 
Iterator<Item>& operator*() { return *_i; } 

private: 
// disallow copy and assignment to avoid 
II multiple deletions of _i: 

IteratorPtr(const IteratorPtr&); 
IteratorPtrfc operator=(const IteratorPtr&); 

private: 
Iterator*:Item>* _i; 

} ; 

IteratorPtr lets us simplify our printing code: 

AbstractList<Employee*>* employees; 
// ... 

IteratorPtr<Employee*> iterator(employees->CreateIterator()); 
PrintEmployees(*iterator); 

6. An internal Listlterator. As a final example, let's look at a possible implementa
tion of an internal or passive Li s 111 era tor class. Here the iterator controls 
the iteration, and it applies an operation to each element. 
The issue in this case is how to parameterize the iterator with the operation 
we want to perform on each element. C++ does not support anonymous 
functions or closures that other languages provide for this task. There are at 
least two options: (1) Pass in a pointer to a function (global or static), or (2) 
rely on subclassing. In the first case, the iterator calls the operation passed 
to it at each point in the iteration. In the second case, the iterator calls an 
operation that a subclass overrides to enact specific behavior. 
Neither option is perfect. Often you want to accumulate state during the 
iteration, and functions aren't well-suited to that; we would have to use 
static variables to remember the state. An Iterator subclass provides us 
with a convenient place to store the accumulated state, like in an instance 
variable. But creating a subclass for every different traversal is more work. 
Here's a sketch of the second option, which uses subclassing. We call the 
internal iterator a ListTraverser. 

template <class Item> 
class ListTraverser { 
public: 

ListTraverser(List<Item>* aList); 
bool Traverse(); 

protected: 
virtual bool ProcessItem(const Item&) = 0; 

private: 
ListIterator<Item> _iterator; 

) ; 

ListTraverser takes a List instance as a parameter. Internally it uses an 
external Listlterator to do the traversal. Traverse starts the traversal 
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and calls Processltem for each item. The internal iterator can choose to 
terminate a traversal by returning false from Processltem. Traverse 
returns whether the traversal terminated prematurely. 

template cclass Item> 
ListTraverser<Item>::ListTraverser ( 

List<Item>* aList 
) : _iterator(aList) { } 

template cclass Item> 
bool ListTraverser<Item>::Traverse () { 

bool result = false; 

for ( 
_iterator.First(); 
!_iterator.IsDone(); 
.iterator.Next() 

{ 
result = Processltem(.iterator.Currentltem()); 

if (result == false) { 
break; 

} ' 
} 
return result; 

Let's use a ListTraverser to print the first 10 employees from our em
ployee list. To do it we have to subclass ListTraverser and override 
Processltem. We count the number of printed employees in a .count 
instance variable. 

class PrintNEmployees : public ListTraverser<Employee*> { 
public: 

PrintNEmployees(List<Employee*>* aList, int n) : 
ListTraverser<Employee*>(aList) , 
.total(n), .count(0) { } 

protected: 
bool Processltem(Employee* const&); 

private: 
int .total; 
int .count; 

} ; 

bool PrintNEmployees::Processltem (Employee* const& e) { 
.count++; 
e->Print(); 
return .count < .total; 

) 

Here's how PrintNEmployees prints the first 10 employees on the list: 
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List<Employee*>* employees; 

// ... 

PrintNEmployees pa(employees, 10); 
pa.Traverse(); 

Note how the client doesn't specify the iteration loop. The entire iteration 
logic can be reused. This is the primary benefit of an internal iterator. It's a 
bit more work than an external iterator, though, because we have to define a 
new class. Contrast this with using an external iterator: 

ListIterator<Employee*> i(employees); 
int count = 0; 

for (i.FirstO; li.IsDoneO; i.NextO) { 
count++; 
i .Currentltem()->Print(); 

if (count >=10) { 
break; 

} 
} 

Internal iterators can encapsulate different kinds of iteration. For example, 
FilteringListTraverser encapsulates an iteration that processes only 
items that satisfy a test: 

template cclass Item> 
class FilteringListTraverser { 
public: 

FilteringListTraverser(List<Item>* aList); 
bool Traverse(); 

protected: 
virtual bool Processltem(const Item&) = 0; 
virtual bool Testltem(const Item&) = 0; 

private: 
ListIterator<Item> .iterator; 

) ; 

This interface is the same as ListTraverser's except for an added 
Testltem member function that defines the test. Subclasses override 
Testltem to specify the test. 
Traverse decides to continue the traversal based on the outcome of the test: 

template cclass Item> 
void FilteringListTraverser<Item>::Traverse () { 

bool result = false; 

for ( 
_iterator.First(); 
!_iterator.IsDone(); 
_iterator.Next() 

) ( 

if (TestItem(_iterator.Currentltem())) { 
result = Processltem(.iterator.Currentltem()); 
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if (result == false) { 
break; 

} 
} 

) 
return result; 

} 

A variant of this class could define Traverse to return if at least one item 
satisfies the test.6 

Known Uses 
Iterators are common in object-oriented systems. Most collection class libraries 
offer iterators in one form or another. 

Here's an example from the Booch components [Boo94], a popular collection 
class library. It provides both a fixed size (bounded) and dynamically growing 
(unbounded) implementation of a queue. The queue interface is defined by an 
abstract Queue class. To support polymorphic iteration over the different queue 
implementations, the queue iterator is implemented in the terms of the abstract 
Queue class interface. This variation has the advantage that you don't need a 
factory method to ask the queue implementations for their appropriate iterator. 
However, it requires the interface of the abstract Queue class to be powerful 
enough to implement the iterator efficiently. 

Iterators don't have to be defined as explicitly in Smalltalk. The standard collection 
classes (Bag, Set, Dictionary, OrderedCollection, String, etc.) define an internal 
iterator method do:, which takes a block (i.e., closure) as an argument. Each 
element in the collection is bound to the local variable in the block; then the block 
is executed. Smalltalk also includes a set of Stream classes that support an iterator
like interface. ReadStream is essentially an Iterator, and it can act as an external 
iterator for all the sequential collections. There are no standard external iterators 
for nonsequential collections such as Set and Dictionary. 

Polymorphic iterators and the cleanup Proxy described earlier are provided by 
the ET++ container classes [WGM881. The Unidraw graphical editing framework 
classes use cursor-based iterators [VL90]. 

ObjectWindows 2.0 [Bor94] provides a class hierarchy of iterators for containers. 
You can iterate over different container types in the same way. The ObjectWindow 
iteration syntax relies on overloading the postincrement operator + + to advance 
the iteration. 

Related Patterns 
Composite (163): Iterators are often applied to recursive structures such as Com
posites. 

6The Traverse operation in these examples is a Template Method (325) with primitive operations 
Testltemand Processltem. 
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- -ictory Method (107): Polymorphic iterators rely on factory methods to instantiate 
appropriate Iterator subclass. 

^ 'emento (283) is often used in conjunction with the Iterator pattern. An iterator 
- a. n use a memento to capture the state of an iteration. The iterator stores the 
'"emento internally. 
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MEDIATOR Object Behavioral 

Intent 
Define an object that encapsulates how a set of objects interact. Mediator promotes 
loose coupling by keeping objects from referring to each other explicitly, and it 
lets you vary their interaction independently. 

Motivation 
Object-oriented design encourages the distribution of behavior among objects. 
Such distribution can result in an object structure with many connections between 
objects; in the worst case, every object ends up knowing about every other. 

Though partitioning a system into many objects generally enhances reusability, 
proliferating interconnections tend to reduce it again. Lots of interconnections 
make it less likely that an object can work without the support of others—the 
system acts as though it were monolithic. Moreover, it can be difficult to change 
the system's behavior in any significant way, since behavior is distributed among 
many objects. As a result, you may be forced to define many subclasses to cus
tomize the system's behavior. 

As an example, consider the implementation of dialog boxes in a graphical user 
interface. A dialog box uses a window to present a collection of widgets such as 
buttons, menus, and entry fields, as shown here: 
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Often there are dependencies between the widgets in the dialog. For example, 
a button gets disabled when a certain entry field is empty. Selecting an entry 
in a list of choices called a list box might change the contents of an entry field. 
Conversely, typing text into the entry field might automatically select one or more 
corresponding entries in the list box. Once text appears in the entry field, other 
buttons may become enabled that let the user do something with the text, such as 
changing or deleting the thing to which it refers. 

Different dialog boxes will have different dependencies between widgets. So even 
though dialogs display the same kinds of widgets, they can't simply reuse stock 
widget classes; they have to be customized to reflect dialog-specific dependencies. 
Customizing them individually by subclassing will be tedious, since many classes 
are involved. 

You can avoid these problems by encapsulating collective behavior in a separate 
mediator object. A mediator is responsible for controlling and coordinating the 
interactions of a group of objects. The mediator serves as an intermediary that 
keeps objects in the group from referring to each other explicitly. The objects only 
know the mediator, thereby reducing the number of interconnections. 

For example, FontDialogDirector can be the mediator between the widgets in 
a dialog box. A FontDialogDirector object knows the widgets in a dialog and 
coordinates their interaction. It acts as a hub of communication for widgets: 

/" X 
aListBox 

director 

The following interaction diagram illustrates how the objects cooperate to handle 
a change in a list box's selection: 
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Here's the succession of events by which a list box's selection passes to an entry 
field: 

1. The list box tells its director that it's changed. 

2. The director gets the selection from the list box. 

3. The director passes the selection to the entry field. 

4. Now that the entry field contains some text, the director enables button(s) 
for initiating an action (e.g., "demibold," "oblique"). 

Note how the director mediates between the list box and the entry field. Widgets 
communicate with each other only indirectly, through the director. They don't 
have to know about each other; all they know is the director. Furthermore, because 
the behavior is localized in one class, it can be changed or replaced by extending 
or replacing that class. 

Here's how the FontDialogDirector abstraction can be integrated into a class 
library: 

DialogDIrector director 

ShowDialogQ 
CreateWidgetsf) 
WidgetChanged(Widget) 

Widget 

Changed() o- director->WidgetChanged(this) 

FontDialogDirector 

CreateWidgets() 
WidgetChanged(Widget) 

list 
ListBox 

GetSelectionQ 

field 

EntryField 

SetTextQ 
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DialogDirector is an abstract class that defines the overall behavior of a dia
log. Clients call the ShowDialog operation to display the dialog on the screen. 
CreateWidgets is an abstract operation for creating the widgets of a dialog. Wid-
getChanged is another abstract operation; widgets call it to inform their director 
that they have changed. DialogDirector subclasses override CreateWidgets to cre
ate the proper widgets, and they override WidgetChanged to handle the changes. 

Applicability 
Use the Mediator pattern when 

• a set of objects communicate in well-defined but complex ways. The resulting 
interdependencies are unstructured and difficult to understand. 

• reusing an object is difficult because it refers to and communicates with many 
other objects. 

• a behavior that's distributed between several classes should be customizable 
without a lot of subclassing. 

Structure 

A typical object structure might look like this: 
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Participants 
• Mediator (DialogDirector) 

- defines an interface for communicating with Colleague objects. 

• ConcreteMediator (FontDialogDirector) 

- implements cooperative behavior by coordinating Colleague objects. 

- knows and maintains its colleagues. 

• Colleague classes (ListBox, EntryField) 

- each Colleague class knows its Mediator object. 

- each colleague communicates with its mediator whenever it would have 
otherwise communicated with another colleague. 

Collaborations 
• Colleagues send and receive requests from a Mediator object. The mediator 

implements the cooperative behavior by routing requests between the appro
priate colleague(s). 

Consequences 
The Mediator pattern has the following benefits and drawbacks: 

1. It limits subclassing. A mediator localizes behavior that otherwise would be 
distributed among several objects. Changing this behavior requires subclass
ing Mediator only; Colleague classes can be reused as is. 

2. It decouples colleagues. A mediator promotes loose coupling between col
leagues. You can vary and reuse Colleague and Mediator classes indepen
dently. 

3. It simplifies object protocols. A mediator replaces many-to-many interactions 
with one-to-many interactions between the mediator and its colleagues. One-
to-many relationships are easier to understand, maintain, and extend. 

4. It abstracts how objects cooperate. Making mediation an independent concept 
and encapsulating it in an object lets you focus on how objects interact apart 
from their individual behavior. That can help clarify how objects interact in 
a system. 

5. It centralizes control. The Mediator pattern trades complexity of interaction 
for complexity in the mediator. Because a mediator encapsulates protocols, 
it can become more complex than any individual colleague. This can make 
the mediator itself a monolith that's hard to maintain. 
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Implementation 
The following implementation issues are relevant to the Mediator pattern: 

1. Omitting the abstract Mediator class. There's no need to define an abstract 
Mediator class when colleagues work with only one mediator. The abstract 
coupling that the Mediator class provides lets colleagues work with different 
Mediator subclasses, and vice versa. 

2. Colleague-Mediator communication. Colleagues have to communicate with 
their mediator when an event of interest occurs. One approach is to im
plement the Mediator as an Observer using the Observer (293) pattern. Col
league classes act as Subjects, sending notifications to the mediator whenever 
they change state. The mediator responds by propagating the effects of the 
change to other colleagues. 
Another approach defines a specialized notification interface in Mediator 
that lets colleagues be more direct in their communication. Smalltalk/V for 
Windows uses a form of delegation: When communicating with the media
tor, a colleague passes itself as an argument, allowing the mediator to identify 
the sender. The Sample Code uses this approach, and the Smalltalk/V im
plementation is discussed further in the Known Uses. 

Sample Code 
We'll use a DialogDirector to implement the font dialog box shown in the Moti
vation. The abstract class DialogDirector defines the interface for directors. 

class DialogDirector { 
public: 

virtual "DialogDirector(); 

virtual void ShowDialog(); 
virtual void WidgetChanged(Widget*) = 0; 

protected: 
DialogDirector(); 
virtual void CreateWidgets() = 0; 

} ; 

Widget is the abstract base class for widgets. A widget knows its director. 

class Widget { 
public: 

Widget(DialogDirector*); 
virtual void ChangedO; 

virtual void HandleMouse(MouseEventfc event); 
I I . . .  

private: 
DialogDirector* .director; 

} ;  
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Changed calls the director's WidgetChanged operation. Widgets call 
WidgetChanged on their director to inform it of a significant event. 

void Widget::Changed () { 
_director->WidgetChanged(this); 

} 

Subclasses of DialogDirector override WidgetChanged to affect the ap
propriate widgets. The widget passes a reference to itself as an argument 
to WidgetChanged to let the director identify the widget that changed. 
DialogDirector subclasses redefine the CreateWidgets pure virtual to con
struct the widgets in the dialog. 

The ListBox, EntryField, and Button are subclasses of Widget for special
ized user interface elements. ListBox provides a GetSelection operation to 
get the current selection, and EntryField's SetText operation puts new text 
into the field. 

class ListBox : public Widget { 
public: 

ListBox(DialogDirector*); 

virtual const char* GetSelection(); 
virtual void SetList(List<char*>* listltems); 
virtual void HandleMouse (MouseEventSc event); 
// ... 

} ; 

class EntryField : public Widget { 
public: 

EntryField(DialogDirector*); 

virtual void SetText(const char* text); 
virtual const char* GetText(); 
virtual void HandleMouse(MouseEvent& event); 
// ... 

} ; 

Button is a simple widget that calls Changed whenever it's pressed. This gets 
done in its implementation of HandleMouse: 

class Button : public Widget { 
public: 

Button(DialogDirector*); 

virtual void SetText(const char* text); 
virtual void HandleMouse(MouseEventSc event); 
II... 

}; 
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void Button::HandleMouse (MouseEvent& event) { 
I I . . .  
Changed(); 

} 

The FontDialogDirector class mediates between widgets in the dialog box. 
FontDialogDirector is a subclass of DialogDirector: 

class FontDialogDirector : public DialogDirector { 
public: 

FontDialogDirector(); 
virtual "FontDialogDirector(); 
virtual void WidgetChanged(Widget*); 

protected: 
virtual void CreateWidgets(); 

private: 
Button* _ok; 
Button* _cancel; 
ListBox* _fontList; 
EntryField* _fontName; 

FontDialogDirector keeps track of the widgets it displays. It redefines 
CreateWidgets to create the widgets and initialize its references to them: 

void FontDialogDirector::CreateWidgets () { 
_ok = new Button(this); 
_cancel = new Button(this); 
_fontList = new ListBox(this); 
_fontName = new EntryField(this); 

// fill the listBox with the available font names 

// assemble the widgets in the dialog 
) 

WidgetChanged ensures that the widgets work together properly: 

void FontDialogDirector::WidgetChanged ( 
Widget* theChangedWidget 

) { 

if (theChangedWidget == _fontList) { 
_fontName->SetText(_fontList->GetSelection() ) ; 

} else if (theChangedWidget == _ok) { 
// apply font change and dismiss dialog 
I I . . .  
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} else if (theChangedWidget == _cancel] 
// dismiss dialog 

} 

The complexity of WidgetChanged increases proportionally with the complexity 
of the dialog. Large dialogs are undesirable for other reasons, of course, but 
mediator complexity might mitigate the pattern's benefits in other applications. 

Known Uses 
Both ET++ [WGM88] and the THINK C class library [Sym93b] use director-like 
objects in dialogs as mediators between widgets. 

The application architecture of Smalltalk/V for Windows is based on a media
tor structure [LaL94j. In that environment, an application consists of a Window 
containing a set of panes. The library contains several predefined Pane objects; 
examples include TextPane, ListBox, Button, and so on. These panes can be used 
without subclassing. An application developer only subclasses from ViewMan-
ager, a class that's responsible for doing inter-pane coordination. ViewManager is 
the Mediator, and each pane only knows its view manager, which is considered 
the "owner" of the pane. Panes don't refer to each other directly. 

The following object diagram shows a snapshot of an application at run-time: 

aListBox 

aTextPane 

owner 

aButton 

aViewManager 

textPane 
listBox 
button 

Smalltalk/V uses an event mechanism for Pane-ViewManager communication. A 
pane generates an event when it wants to get information from the mediator or 
when it wants to inform the mediator that something significant happened. An 
event defines a symbol (e.g., #select) that identifies the event. To handle the 
event, the view manager registers a method selector with the pane. This selector 
is the event s handler; it will be invoked whenever the event occurs. 
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The following code excerpt shows how a ListPane object gets created inside a 
ViewManager subclass and how ViewManager registers an event handler for the 
#select event: 

self addSubpane: (ListPane new 
paneName: 'myListPane'; 
owner: self; 
when: #select perform: #listSelect:). 

Another application of the Mediator pattern is in coordinating complex updates. 
An example is the ChangeManager class mentioned in Observer (293). Change-
Manager mediates between subjects and observers to avoid redundant updates. 
When an object changes, it notifies the ChangeManager, which in turn coordinates 
the update by notifying the object's dependents. 

A similar application appears in the Unidraw drawing framework [ VL90] and uses 
a class called CSolver to enforce connectivity constraints between "connectors." 
Objects in graphical editors can appear to stick to one another in different ways. 
Connectors are useful in applications that maintain connectivity automatically, 
like diagram editors and circuit design systems. CSolver is a mediator between 
connectors. It solves the connectivity constraints and updates the connectors' 
positions to reflect them. 

Related Patterns 
Facade (185) differs from Mediator in that it abstracts a subsystem of objects 
to provide a more convenient interface. Its protocol is unidirectional; that is, 
Facade objects make requests of the subsystem classes but not vice versa. In 
contrast, Mediator enables cooperative behavior that colleague objects don't or 
can't provide, and the protocol is multidirectional. 

Colleagues can communicate with the mediator using the Observer (293) pattern. 
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MEMENTO Object Behavioral 

Intent 
Without violating encapsulation, capture and externalize an object's internal state 
so that the object can be restored to this state later. 

Also Known As 
Token 

Motivation 
Sometimes it's necessary to record the internal state of an object. This is required 
when implementing checkpoints and undo mechanisms that let users back out of 
tentative operations or recover from errors. You must save state information some
where so that you can restore objects to their previous states. But objects normally 
encapsulate some or all of their state, making it inaccessible to other objects and 
impossible to save externally. Exposing this state would violate encapsulation, 
which can compromise the application's reliability and extensibility. 

Consider for example a graphical editor that supports connectivity between ob
jects. A user can connect two rectangles with a line, and the rectangles stay con
nected when the user moves either of them. The editor ensures that the line 
stretches to maintain the connection. 

A well-known way to maintain connectivity relationships between objects is with 
a constraint-solving system. We can encapsulate this functionality in a Constraint-
Solver object. ConstraintSolver records connections as they are made and gener
ates mathematical equations that describe them. It solves these equations when
ever the user makes a connection or otherwise modifies the diagram. Constraint-
Solver uses the results of its calculations to rearrange the graphics so that they 
maintain the proper connections. 

Supporting undo in this application isn't as easy as it may seem. An obvious way 
to undo a move operation is to store the original distance moved and move the 
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object back an equivalent distance. However, this does not guarantee all objects 
will appear where they did before. Suppose there is some slack in the connec
tion. In that case, simply moving the rectangle back to its original location won't 
necessarily achieve the desired effect. 

In general, the ConstraintSolver's public interface might be insufficient to allow 
precise reversal of its effects on other objects. The undo mechanism must work 
more closely with ConstraintSolver to reestablish previous state, but we should 
also avoid exposing the ConstraintSolver's internals to the undo mechanism. 

We can solve this problem with the Memento pattern. A memento is an object 
that stores a snapshot of the internal state of another object—the memento's 
originator. The undo mechanism will request a memento from the originator 
when it needs to checkpoint the originator's state. The originator initializes the 
memento with information that characterizes its current state. Only the originator 
can store and retrieve information from the memento—the memento is "opaque" 
to other objects. 

In the graphical editor example just discussed, the ConstraintSolver can act as an 
originator. The following sequence of events characterizes the undo process: 

1. The editor requests a memento from the ConstraintSolver as a side-effect of 
the move operation. 

2. The ConstraintSolver creates and returns a memento, an instance of a class 
SolverState in this case. A SolverState memento contains data structures that 
describe the current state of the ConstraintSolver's internal equations and 
variables. 

3. Later when the user undoes the move operation, the editor gives the Solver
State back to the ConstraintSolver. 

4. Based on the information in the SolverState, the ConstraintSolver changes 
its internal structures to return its equations and variables to their exact 
previous state. 

This arrangement lets the ConstraintSolver entrust other objects with the infor
mation it needs to revert to a previous state without exposing its internal structure 
and representations. 
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Applicability 
Use the Memento pattern when 

• a snapshot of (some portion of) an object's state must be saved so that it can 
be restored to that state later, and 

• a direct interface to obtaining the state would expose implementation details 
and break the object's encapsulation. 

Structure 

Participants 
• Memento (SolverState) 

- stores internal state of the Originator object. The memento may store as 
much or as little of the originator's internal state as necessary at its origi
nator's discretion. 

- protects against access by objects other than the originator. Mementos 
have effectively two interfaces. Caretaker sees a narrow interface to the 
Memento—it can only pass the memento to other objects. Originator, in 
contrast, sees a wide interface, one that lets it access all the data necessary to 
restore itself to its previous state. Ideally, only the originator that produced 
the memento would be permitted to access the memento's internal state. 

• Originator (ConstraintSolver) 

- creates a memento containing a snapshot of its current internal state. 

- uses the memento to restore its internal state. 

• Caretaker (undo mechanism) 

- is responsible for the memento's safekeeping. 

- never operates on or examines the contents of a memento. 
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Collaborations 
A caretaker requests a memento from an originator, holds it for a time, and 
passes it back to the originator, as the following interaction diagram illustrates: 

aCaretaker anOriginator 

CreateMemento() 

aMemento 

SetMemento(aMemento) 

new Memento 

SetState() 3 
GetState() c 

Sometimes the caretaker won't pass the memento back to the originator, be
cause the originator might never need to revert to an earlier state. 

• Mementos are passive. Only the originator that created a memento will assign 
or retrieve its state. 

Consequences 
The Memento pattern has several consequences: 

1. Preserving encapsulation boundaries. Memento avoids exposing information 
that only an originator should manage but that must be stored nevertheless 
outside the originator. The pattern shields other objects from potentially 
complex Originator internals, thereby preserving encapsulation boundaries. 

2. It simplifies Originator. In other encapsulation-preserving designs, Originator 
keeps the versions of internal state that clients have requested. That puts 
all the storage management burden on Originator. Having clients manage 
the state they ask for simplifies Originator and keeps clients from having to 
notify originators when they're done. 

3. Using mementos might be expensive. Mementos might incur considerable over
head if Originator must copy large amounts of information to store in the 
memento or if clients create and return mementos to the originator often 
enough. Unless encapsulating and restoring Originator state is cheap, the 
pattern might not be appropriate. See the discussion of incrementality in the 
Implementation section. 

4. Defining narrow and wide interfaces. It may be difficult in some languages to 
ensure that only the originator can access the memento's state. 

5. Hidden costs in caring for mementos. A caretaker is responsible for deleting the 
mementos it cares for. However, the caretaker has no idea how much state is 



MEMENTO 287 

in the memento. Hence an otherwise lightweight caretaker might incur large 
storage costs when it stores mementos. 

Implementation 
Here are two issues to consider when implementing the Memento pattern: 

1. Language support. Mementos have two interfaces: a wide one for originators 
and a narrow one for other objects. Ideally the implementation language 
will support two levels of static protection. C++ lets you do this by making 
the Originator a friend of Memento and making Memento's wide interface 
private. Only the narrow interface should be declared public. For example: 

class State; 

class Originator { 
public: 

Memento* CreateMemento(); 
void SetMemento(const Memento*); 
I I  . . .  

private: 
State* _state; // internal data structures 
I I  . . .  

} ; 

class Memento { 
public: 

// narrow public interface 
virtual ~Memento(); 

private: 
// private members accessible only to Originator 
friend class Originator; 
Memento(); 

void SetState(State*); 
State* GetState(); 
I I . . .  

private: 
State* _state; 
I I . . .  

} ; 

2. Storing incremental changes. When mementos get created and passed back to 
their originator in a predictable sequence, then Memento can save just the 
incremental change to the originator's internal state. 
For example, undoable commands in a history list can use mementos to en
sure that commands are restored to their exact state when they're undone 
(see Command (233)). The history list defines a specific order in which com
mands can be undone and redone. That means mementos can store just the 
incremental change that a command makes rather than the full state of every 
object they affect. In the Motivation example given earlier, the constraint 
solver can store only those internal structures that change to keep the line 
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connecting the rectangles, as opposed to storing the absolute positions of 
these objects. 

Sample Code 
The C++ code given here illustrates the ConstraintSolver example discussed ear
lier. We use MoveCommand objects (see Command (233)) to (un)do the translation 
of a graphical object from one position to another. The graphical editor calls the 
command's Execute operation to move a graphical object and Unexecute to 
undo the move. The command stores its target, the distance moved, and an in
stance of ConstraintSolverMemento, a memento containing state from the 
constraint solver. 

class Graphic; 

// base class for graphical objects in the graphical editor 

class MoveCommand { 
public: 

MoveCommand(Graphic* target, const Points delta); 
void Execute(); 
void Unexecute(); 

private: 
ConstraintSolverMemento* _state; 
Point _delta; 
Graphic* _target; 

} ; 

The connection constraints are established by the class ConstraintSolver. 
Its key member function is Solve, which solves the constraints registered with 
the AddConstraint operation. To support undo, ConstraintSolver's state 
can be externalized with CreateMemento into a ConstraintSolverMemento 
instance. The constraint solver can be returned to a previous state by railing 
SetMemento. ConstraintSolver is a Singleton (127). 

class ConstraintSolver { 
public: 

static ConstraintSolver* Instance(); 

void Solve(); 
void AddConstraint( 

Graphic* startConnection, Graphic* endConnection 
) ; 

void RemoveConstraint( 
Graphic* startConnection, Graphic* endConnection 

) ; 
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ConstraintSolverMemento* CreateMemento(); 
void SetMemento(ConstraintSolverMemento*); 

private: 
// nontrivial state and operations for enforcing 
// connectivity semantics 

class ConstraintSolverMemento { 
public: 

virtual "ConstraintSolverMemento(); 
private: 

friend class ConstraintSolver; 
ConstraintSolverMemento(); 

// private constraint solver state 
} ; 

Given these interfaces, we can implement MoveCommand members Execute and 
Unexecute as follows: 

void MoveCommand::Execute () { 
ConstraintSolver* solver = ConstraintSolver::Instance(); 
_state = solver->CreateMemento(); // create a memento 
_target->Move(_delta); 
solver->Solve(); 

void MoveCommand::Unexecute () { 
ConstraintSolver* solver = ConstraintSolver::Instance(); 
_target->Move(-_delta); 
solver->SetMemento(_state); // restore solver state 
solver->Solve(); 

} 

Execute acquires a ConstraintSolverMemento memento before it moves the 
graphic. Unexecute moves the graphic back, sets the constraint solver's state to 
the previous state, and finally tells the constraint solver to solve the constraints. 

Known Uses 
The preceding sample code is based on Unidraw's support for connectivity 
through its CSolver class [VL90]. 

Collections in Dylan [App92] provide an iteration interface that reflects the Me
mento pattern. Dylan's collections have the notion of a "state" object, which is a 
memento that represents the state of the iteration. Each collection can represent 
the current state of the iteration in any way it chooses; the representation is com
pletely hidden from clients. The Dylan iteration approach might be translated to 
C++ as follows: 
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template <class Item> 
class Collection { 
public: 

Collection(); 

IterationState* CreatelnitialState(); 
void Next(IterationState*); 
bool IsDone(const IterationState*) const; 
Item CurrentItern(const IterationState*) const; 
IterationState* Copy(const IterationState*) const; 

void Append(const Item&); 
void Remove(const Item&); 
I I . . .  

} ; 

CreatelnitialState returns an initialized IterationState object for the 
collection. Next advances the state object to the next position in the iteration; 
it effectively increments the iteration index. Is Done returns true if Next has 
advanced beyond the last element in the collection. Current Item dereferences 
the state object and returns the element in the collection to which it refers. Copy 
returns a copy of the given state object. This is useful for marking a point in an 
iteration. 

Given a class ItemType, we can iterate over a collection of its instances as 
follows7: 

class ItemType { 
public: 

void Process(); 
I I . . .  

} ; 

Collection<ItemType*> aCollection; 
IterationState* state; 

state = aCollection.CreatelnitialState(); 

while (laCollection.IsDone(state)) { 
aCollection.Currentltem(state)->Process(); 
aCollection.Next(state); 

} 
delete state; 

The memento-based iteration interface has two interesting benefits: 

1. More than one state can work on the same collection. (The same is true of the 
Iterator (257) pattern.) 

7 Note that our example deletes the state object at the end of the iteration. But delete won't get called if 
Processltem throws an exception, thus creating garbage. This is a problem in C++ but not in Dylan, which 
has garbage collection. We discuss a solution to this problem on page 266. 
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2. It doesn't require breaking a collection's encapsulation to support iteration. 
The memento is only interpreted by the collection itself; no one else has access 
to it. Other approaches to iteration require breaking encapsulation by making 
iterator classes friends of their collection classes (see Iterator (257)). The 
situation is reversed in the memento-based implementation: Collection 
is a friend of the IteratorState. 

The QOCA constraint-solving toolkit stores incremental information in memen
tos [HHMV92]. Clients can obtain a memento that characterizes the current so
lution to a system of constraints. The memento contains only those constraint 
variables that have changed since the last solution. Usually only a small subset 
of the solver's variables changes for each new solution. This subset is enough 
to return the solver to the preceding solution; reverting to earlier solutions re
quires restoring mementos from the intervening solutions. Hence you can't set 
mementos in any order; QOCA relies on a history mechanism to revert to earlier 
solutions. 

Related Patterns 
Command (233): Commands can use mementos to maintain state for undoable 
operations. 

Iterator (257): Mementos can be used for iteration as described earlier. 
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OBSERVER Object Behavioral 

Intent 
Define a one-to-many dependency between objects so that when one object 
changes state, all its dependents are notified and updated automatically. 

Also Known As 
Dependents, Publish-Subscribe 

Motivation 
A common side-effect of partitioning a system into a collection of cooperating 
classes is the need to maintain consistency between related objects. You don't 
want to achieve consistency by making the classes tightly coupled, because that 
reduces their reusability. 

For example, many graphical user interface toolkits separate the presentational 
aspects of the user interface from the underlying application data [KP88, LVC89, 
P+ 88, WGM88]. Classes defining application data and presentations can be reused 
independently. They can work together, too. Both a spreadsheet object and bar 
chart object can depict information in the same application data object using 
different presentations. The spreadsheet and the bar chart don't know about each 
other, thereby letting you reuse only the one you need. But they behave as though 
they do. When the user changes the information in the spreadsheet, the bar chart 
reflects the changes immediately, and vice versa. 

observers 

• a b 1 c 1 n 6 0 ]  30 | 10 | 
KH-JIBCIK-;.! 
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change notification 

requests, modifications 

subject 
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This behavior implies that the spreadsheet and bar chart are dependent on the 
data object and therefore should be notified of any change in its state. And there's 
no reason to limit the number of dependent objects to two; there may be any 
number of different user interfaces to the same data. 

The Observer pattern describes how to establish these relationships. The key 
objects in this pattern are subject and observer. A subject may have any number 
of dependent observers. All observers are notified whenever the subject undergoes 
a change in state. In response, each observer will query the subject to synchronize 
its state with the subject's state. 

This kind of interaction is also known as publish-subscribe. The subject is the 
publisher of notifications. It sends out these notifications without having to know 
who its observers are. Any number of observers can subscribe to receive notifica
tions. 

Applicability 
Use the Observer pattern in any of the following situations: 

• When an abstraction has two aspects, one dependent on the other. Encapsu
lating these aspects in separate objects lets you vary and reuse them inde
pendently. 

• When a change to one object requires changing others, and you don't know 
how many objects need to be changed. 

• When an object should be able to notify other objects without making as
sumptions about who these objects are. In other words, you don't want these 
objects tightly coupled. 

Structure 
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Participants 
• Subject 

- knows its observers. Any number of Observer objects may observe a sub
ject. 

- provides an interface for attaching and detaching Observer objects. 

• Observer 

- defines an updating interface for objects that should be notified of changes 
in a subject. 

• ConcreteSubject 

- stores state of interest to ConcreteObserver objects. 

- sends a notification to its observers when its state changes. 

• ConcreteObserver 

- maintains a reference to a ConcreteSubject object. 

- stores state that should stay consistent with the subject's. 

- implements the Observer updating interface to keep its state consistent 
with the subject's. 

Collaborations 
• ConcreteSubject notifies its observers whenever a change occurs that could 

make its observers' state inconsistent with its own. 
• After being informed of a change in the concrete subject, a ConcreteObserver 

object may query the subject for information. ConcreteObserver uses this in
formation to reconcile its state with that of the subject. 
The following interaction diagram illustrates the collaborations between a 
subject and two observers: 

aConcreteSubject 

X 
aConcreteObserver anotherConcreteObserver 

SetStateQ r'" 

NotifyQ 

UpdateO 

GetStateQ 

UpdateO 

GetStateQ 

T T 
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Note how the Observer object that initiates the change request postpones 
its update until it gets a notification from the subject. Notify is not always 
performed by an observer. It can be performed by the subject or by some other 
object entirely. The Implementation section discusses some common variations. 

Consequences 
The Observer pattern lets you vary subjects and observers independently. You 
can reuse subjects without reusing their observers, and vice versa. It lets you add 
observers without modifying the subject or other observers. 

Further benefits and liabilities of the Observer pattern include the following: 

1. Abstract coupling between Subject and Observer. All a subject knows is that it 
has a list of observers, each conforming to the simple interface of the abstract 
Observer class. The subject doesn't know the concrete class of any observer. 
Thus the coupling between subjects and observers is abstract and minimal. 
Because Subject and Observer aren't tightly coupled, they can belong to 
different layers of abstraction in a system. A lower-level subject can com
municate and inform a higher-level observer, thereby keeping the system's 
layering intact. If Subject and Observer are lumped together, then the result
ing object must either span two layers (and violate the layering), or it must be 
forced to live in one layer or the other (which might compromise the layering 
abstraction). 

2. Support for broadcast communication. Unlike an ordinary request, the notifi
cation that a subject sends needn't specify its receiver. The notification is 
broadcast automatically to all interested objects that subscribed to it. The 
subject doesn't care how many interested objects exist; its only responsibil
ity is to notify its observers. This gives you the freedom to add and remove 
observers at any time. It's up to the observer to handle or ignore a notification. 

3. Unexpected updates. Because observers have no knowledge of each other's 
presence, they can be blind to the ultimate cost of changing the subject. A 
seemingly innocuous operation on the subject may cause a cascade of updates 
to observers and their dependent objects. Moreover, dependency criteria that 
aren't well-defined or maintained usually lead to spurious updates, which 
can be hard to track down. 

This problem is aggravated by the fact that the simple update protocol pro
vides no details on what changed in the subject. Without additional protocol 
to help observers discover what changed, they may be forced to work hard 
to deduce the changes. 

Implementation 
Several issues related to the implementation of the dependency mechanism are 
discussed in this section. 
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1. Mapping subjects to their observers. The simplest way for a subject to keep 
track of the observers it should notify is to store references to them explicitly 
in the subject. However, such storage may be too expensive when there are 
many subjects and few observers. One solution is to trade space for time by 
using an associative look-up (e.g., a hash table) to maintain the subject-to-
observer mapping. Thus a subject with no observers does not incur storage 
overhead. On the other hand, this approach increases the cost of accessing 
the observers. 

2. Observing more than one subject. It might make sense in some situations for 
an observer to depend on more than one subject. For example, a spreadsheet 
may depend on more than one data source. It's necessary to extend the 
Update interface in such cases to let the observer know which subject is 
sending the notification. The subject can simply pass itself as a parameter 
in the Update operation, thereby letting the observer know which subject to 
examine. 

3. Who triggers the update? The subject and its observers rely on the notification 
mechanism to stay consistent. But what object actually calls Notify to trigger 
the update? Here are two options: 

(a) Have state-setting operations on Subject call Notify after they change 
the subject's state. The advantage of this approach is that clients don't 
have to remember to call Notify on the subject. The disadvantage is that 
several consecutive operations will cause several consecutive updates, 
which may be inefficient. 

(b) Make clients responsible for calling Notify at the right time. The advan
tage here is that the client can wait to trigger the update until after a series 
of state changes has been made, thereby avoiding needless intermediate 
updates. The disadvantage is that clients have an added responsibility 
to trigger the update. That makes errors more likely, since clients might 
forget to call Notify. 

4. Dangling references to deleted subjects. Deleting a subject should not produce 
dangling references in its observers. One way to avoid dangling references 
is to make the subject notify its observers as it is deleted so that they can 
reset their reference to it. In general, simply deleting the observers is not an 
option, because other objects may reference them, or they may be observing 
other subjects as well. 

5. Making sure Subject state is self-consistent before notification. It's important to 
make sure Subject state is self-consistent before calling Notify, because ob
servers query the subject for its current state in the course of updating their 
own state. 

This self-consistency rule is easy to violate unintentionally when Subject 
subclass operations call inherited operations. For example, the notification in 
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the following code sequence is trigged when the subject is in an inconsistent 
state: 

void MySubject::Operation (int newValue) { 
BaseClassSubject::Operation(newValue); 

// trigger notification 

_myInstVar += newValue; 
// update subclass state (too late!) 

} 

You can avoid this pitfall by sending notifications from template methods 
(Template Method (325)) in abstract Subject classes. Define primitive oper
ation for subclasses to override, and make Notify the last operation in the 
template method, which will ensure that the object is self-consistent when 
subclasses override Subject operations. 

void Text::Cut (TextRange r) { 
ReplaceRange(r); // redefined in subclasses 
Notify(); 

} 

By the way, it's always a good idea to document which Subject operations 
trigger notifications. 

6. Avoiding observer-specific update protocols: the push and pull models. Implemen
tations of the Observer pattern often have the subject broadcast additional 
information about the change. The subject passes this information as an 
argument to Update. The amount of information may vary widely. 
At one extreme, which we call the push model, the subject sends observers 
detailed information about the change, whether they want it or not. At the 
other extreme is the pull model; the subject sends nothing but the most 
minimal notification, and observers ask for details explicitly thereafter. 
The pull model emphasizes the subject's ignorance of its observers, whereas 
the push model assumes subjects know something about their observers' 
needs. The push model might make observers less reusable, because Subject 
classes make assumptions about Observer classes that might not always be 
true. On the other hand, the pull model may be inefficient, because Observer 
classes must ascertain what changed without help from the Subject. 

7. Specifying modifications of interest explicitly. You can improve update efficiency 
by extending the subject's registration interface to allow registering observers 
only for specific events of interest. When such an event occurs, the subject in
forms only those observers that have registered interest in that event. Digitalk 
Smalltalk supports this with the notion of aspects for Model (i.e., Subject) 
objects. To register interest in particular events, View objects (i.e., observers) 
send an 

add: self interestln: anAspect 
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message to their models, where anAspect specifies the event of interest. At 
notification time, the subject supplies the changed aspect to its observers as 
a parameter to the Update operation. For example: 

observer update: theChangedAspect 

8. Encapsulating complex update semantics. When the dependency relationship 
between subjects and observers is particularly complex, an object that main
tains these relationships might be required. We call such an object a Change-
Manager. Its purpose is to minimize the work required to make observers 
reflect a change in their subject. For example, if an operation involves changes 
to several interdependent subjects, you might have to ensure that their ob
servers are notified only after all the subjects have been modified to avoid 
notifying observers more than once. 
ChangeManager has three responsibilities: 

(a) It maps a subject to its observers and provides an interface to maintain 
this mapping. This eliminates the need for subjects to maintain references 
to their observers and vice versa. 

(b) It defines a particular update strategy. 

(c) It updates all dependent observers at the request of a subject. 

The following diagram depicts a simple ChangeManager-based implemen
tation of the Observer pattern. There are two specialized ChangeManagers. 
SimpleChangeManager is naive in that it always updates all observers of each 
subject. In contrast, DAGChangeManager handles directed-acyclic graphs of 
dependencies between subjects and their observers. A DAGChangeManager 
is preferable to a SimpleChangeManager when an observer observes more 
than one subject. In that case, a change in two or more subjects might cause 
redundant updates. The DAGChangeManager ensures the observer receives 
just one update. SimpleChangeManager is fine when multiple updates aren't 
an issue. 
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ChangeManager is an instance of the Mediator (273) pattern. In general there 
is only one ChangeManager, and it is known globally. The Singleton (127) 
pattern would be useful here. 

9. Combining the Subject and Observer classes. Class libraries written in languages 
that lack multiple inheritance (like Smalltalk) generally don't define separate 
Subject and Observer classes but combine their interfaces in one class. That 
lets you define an object that acts as both a subject and an observer without 
multiple inheritance. In Smalltalk, for example, the Subject and Observer 
interfaces are defined in the root class Object, making them available to all 
classes. 

Sample Code 
An abstract class defines the Observer interface: 

class Subject; 

class Observer { 
public: 

virtual "Observer(); 
virtual void Update(Subject* theChangedSubject) = 0; 

protected: 
Observer(); 

} ; 

This implementation supports multiple subjects for each observer. The sub
ject passed to the Update operation lets the observer determine which subject 
changed when it observes more than one. 

Similarly, an abstract class defines the Subject interface: 
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class Subject { 
public: 

virtual "Subject!) ; 

virtual void Attach(Observer*); 
virtual void Detach(Observer*); 
virtual void NotifyO; 

protected: 
Subj ect(); 

private: 
List<Observer*> *_observers; 

} ; 

void Subject::Attach (Observer* o) { 
_observers->Append(o); 

) 

void Subject::Detach (Observer* o) { 
_observers->Remove(o); 

) 

void Subject::Notify () { 
ListIterator<Observer*> i(.observers); 

for (i. First () ; !i.IsDone(); i.NextO) { 
i.Currentltemf)->Update(this); 

} 
} 

ClockTimer is a concrete subject for storing and maintaining the time of day. 
It notifies its observers every second. ClockTimer provides the interface for 
retrieving individual time units such as the hour, minute, and second. 

class ClockTimer : public Subject { 
public: 

ClockTimer(); 

virtual int GetHour(); 
virtual int GetMinuteO; 
virtual int GetSecondO; 

void Tick(); 
}; 

The Tick operation gets called by an internal timer at regular intervals to provide 
an accurate time base. Tick updates the ClockTimer's internal state and calls 
Notify to inform observers of the change: 

void ClockTimer::Tick () { 
// update internal time-keeping state 
II ... 
Notify(); 

) 
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Now we can define a class DigitalClock that displays the time. It inherits its 
graphical functionality from a Widget class provided by a user interface toolkit. 
The Observer interface is mixed into the DigitalClock interface by inheriting 
from Observer. 

class DigitalClock: public Widget, public Observer { 
public: 

DigitalClock(ClockTimer*); 
virtual "DigitalClock(); 

virtual void Update(Subject*); 
// overrides Observer operation 

virtual void Draw(); 
// overrides Widget operation; 
// defines how to draw the digital clock 

private: 
ClockTimer* _subject; 

}; 

DigitalClock::DigitalClock (ClockTimer* s) { 
_subject = s; 
_subject->Attach(this); 

} 

DigitalClock::"DigitalClock () { 
_subject->Detach(this); 

} 

Before the Update operation draws the clock face, it checks to make sure the 
notifying subject is the clock's subject: 

void DigitalClock::Update (Subject* theChangedSubject) { 
if (theChangedSubject == _subject) { 

Draw(); 
} 

} 

void DigitalClock::Draw () { 
// get the new values from the subject 

int hour = _subject->GetHour(); 
int minute = _subject->GetMinute(); 
// etc. 

// draw the digital clock 
} 

An AnalogClock class can be defined in the same way. 
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class AnalogClock : public Widget, public Observer { 
public: 

AnalogClock(ClockTimer*); 
virtual void Update(Subject*); 
virtual void DrawO; 
I I  . . .  

} ; 

The following code creates an AnalogClock and a DigitalClock that always 
show the same time: 

ClockTimer* timer = new ClockTimer; 
AnalogClock* analogClock = new AnalogClock(timer); 
DigitalClock* digitalClock = new DigitalClock(timer); 

Whenever the timer ticks, the two clocks will be updated and will redisplay 
themselves appropriately. 

Known Uses 
The first and perhaps best-known example of the Observer pattern appears in 
Smalltalk Model/View/Controller (MVC), the user interface framework in the 
Smalltalk environment [KP88]. MVC's Model class plays the role of Subject, while 
View is the base class for observers. Smalltalk, ET++ [WGM88], and the THINK 
class library [Sym93b] provide a general dependency mechanism by putting Sub
ject and Observer interfaces in the parent class for all other classes in the system. 

Other user interface toolkits that employ this pattern are Interviews [LVC89], 
the Andrew Toolkit [P+88], and Unidraw [VL90]. Interviews defines Observer 
and Observable (for subjects) classes explicitly. Andrew calls them "view" and 
"data object," respectively. Unidraw splits graphical editor objects into View (for 
observers) and Subject parts. 

Related Patterns 
Mediator (273): By encapsulating complex update semantics, the ChangeManager 
acts as mediator between subjects and observers. 

Singleton (127): The ChangeManager may use the Singleton pattern to make it 
unique and globally accessible. 





STATE 305 

Object Behavioral 

Intent 
Allow an object to alter its behavior when its internal state changes. The object 
will appear to change its class. 

Also Known As 
Objects for States 

Motivation 
Consider a class TCPConnection that represents a network connection. A TCP-
Connection object can be in one of several different states: Established, Listening, 
Closed. When a TCPConnection object receives requests from other objects, it 
responds differently depending on its current state. For example, the effect of an 
Open request depends on whether the connection is in its Closed state or its Estab
lished state. The State pattern describes how TCPConnection can exhibit different 
behavior in each state. 

The key idea in this pattern is to introduce an abstract class called TCPState 
to represent the states of the network connection. The TCPState class declares 
an interface common to all classes that represent different operational states. 
Subclasses of TCPState implement state-specific behavior. For example, the classes 
TCPEstablished and TCPClosed implement behavior particular to the Established 
and Closed states of TCPConnection. 

The class TCPConnection maintains a state object (an instance of a subclass of 
TCPState) that represents the current state of the TCP connection. The class TCP-

STATE 
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Connection delegates all state-specific requests to this state object. TCPConnection 
uses its TCPState subclass instance to perform operations particular to the state 
of the connection. 

Whenever the connection changes state, the TCPConnection object changes the 
state object it uses. When the connection goes from established to closed, for exam
ple, TCPConnection will replace its TCPEstablished instance with a TCPClosed 
instance. 

Applicability 
Use the State pattern in either of the following cases: 

• An object's behavior depends on its state, and it must change its behavior at 
run-time depending on that state. 

• Operations have large, multipart conditional statements that depend on the 
object's state. This state is usually represented by one or more enumerated 
constants. Often, several operations will contain this same conditional struc
ture. The State pattern puts each branch of the conditional in a separate class. 
This lets you treat the object's state as an object in its own right that can vary 
independently from other objects. 

Structure 

Participants 
• Context (TCPConnection) 

- defines the interface of interest to clients. 

- maintains an instance of a ConcreteState subclass that defines the current 
state. 

• State (TCPState) 

- defines an interface for encapsulating the behavior associated with a par
ticular state of the Context. 
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• ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed) 

- each subclass implements a behavior associated with a state of the Context. 

Collaborations 
• Context delegates state-specific requests to the current ConcreteState object. 
• A context may pass itself as an argument to the State object handling the 

request. This lets the State object access the context if necessary. 
• Context is the primary interface for clients. Clients can configure a context with 

State objects. Once a context is configured, its clients don't have to deal with 
the State objects directly. 

• Either Context or the ConcreteState subclasses can decide which state succeeds 
another and under what circumstances. 

Consequences 
The State pattern has the following consequences: 

1. It localizes state-specific behavior and partitions behavior for different states. The 
State pattern puts all behavior associated with a particular state into one 
object. Because all state-specific code lives in a State subclass, new states and 
transitions can be added easily by defining new subclasses. 
An alternative is to use data values to define internal states and have Con
text operations check the data explicitly. But then we'd have look-alike con
ditional or case statements scattered throughout Context's implementation. 
Adding a new state could require changing several operations, which com
plicates maintenance. 

The State pattern avoids this problem but might introduce another, because 
the pattern distributes behavior for different states across several State sub
classes. This increases the number of classes and is less compact than a single 
class. But such distribution is actually good if there are many states, which 
would otherwise necessitate large conditional statements. 
Like long procedures, large conditional statements are undesirable. They're 
monolithic and tend to make the code less explicit, which in turn makes 
them difficult to modify and extend. The State pattern offers a better way to 
structure state-specific code. The logic that determines the state transitions 
doesn't reside in monolithic if or switch statements but instead is parti
tioned between the State subclasses. Encapsulating each state transition and 
action in a class elevates the idea of an execution state to full object status. 
That imposes structure on the code and makes its intent clearer. 

2. It makes state transitions explicit. When an object defines its current state solely 
in terms of internal data values, its state transitions have no explicit repre
sentation; they only show up as assignments to some variables. Introduc
ing separate objects for different states makes the transitions more explicit. 
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Also, State objects can protect the Context from inconsistent internal states, 
because state transitions are atomic from the Context's perspective—they 
happen by rebinding one variable (the Context's State object variable), not 
several [dCLF93]. 

3. State objects can be shared. If State objects have no instance variables—that is, 
the state they represent is encoded entirely in their type—then contexts can 
share a State object. When states are shared in this way, they are essentially 
flyweights (see Flyweight (195)) with no intrinsic state, only behavior. 

Implementation 
The State pattern raises a variety of implementation issues: 

1. Who defines the state transitions? The State pattern does not specify which 
participant defines the criteria for state transitions. If the criteria are fixed, 
then they can be implemented entirely in the Context. It is generally more 
flexible and appropriate, however, to let the State subclasses themselves 
specify their successor state and when to make the transition. This requires 
adding an interface to the Context that lets State objects set the Context's 
current state explicitly. 
Decentralizing the transition logic in this way makes it easy to modify or 
extend the logic by defining new State subclasses. A disadvantage of de
centralization is that one State subclass will have knowledge of at least one 
other, which introduces implementation dependencies between subclasses. 

2. A table-based alternative. In C++ Programming Style [Car92], Cargill describes 
another way to impose structure on state-driven code: He uses tables to map 
inputs to state transitions. For each state, a table maps every possible input 
to a succeeding state. In effect, this approach converts conditional code (and 
virtual functions, in the case of the State pattern) into a table look-up. 
The main advantage of tables is their regularity: You can change the transition 
criteria by modifying data instead of changing program code. There are some 
disadvantages, however: 

• A table look-up is often less efficient than a (virtual) function call. 

• Putting transition logic into a uniform, tabular format makes the transi
tion criteria less explicit and therefore harder to understand. 

• It's usually difficult to add actions to accompany the state transitions. 
The table-driven approach captures the states and their transitions, but it 
must be augmented to perform arbitrary computation on each transition. 

The key difference between table-driven state machines and the State pattern 
can be summed up like this: The State pattern models state-specific behavior, 
whereas the table-driven approach focuses on defining state transitions. 
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3. Creating and destroying State objects. A common implementation trade-off 
worth considering is whether (1) to create State objects only when they are 
needed and destroy them thereafter versus (2) creating them ahead of time 
and never destroying them. 

The first choice is preferable when the states that will be entered aren't 
known at run-time, and contexts change state infrequently. This approach 
avoids creating objects that won't be used, which is important if the State 
objects store a lot of information. The second approach is better when state 
changes occur rapidly, in which case you want to avoid destroying states, 
because they may be needed again shortly. Instantiation costs are paid once 
up-front, and there are no destruction costs at all. This approach might be 
inconvenient, though, because the Context must keep references to all states 
that might be entered. 

4. Using dynamic inheritance. Changing the behavior for a particular request 
could be accomplished by changing the object's class at run-time, but this 
is not possible in most object-oriented programming languages. Exceptions 
include Self IUS87] and other delegation-based languages that provide such 
a mechanism and hence support the State pattern directly. Objects in Self 
can delegate operations to other objects to achieve a form of dynamic inher
itance. Changing the delegation target at run-time effectively changes the 
inheritance structure. This mechanism lets objects change their behavior and 
amounts to changing their class. 

Sample Code 
The following example gives the C++ code for the TCP connection example de
scribed in the Motivation section. This example is a simplified version of the 
TCP protocol; it doesn't describe the complete protocol or all the states of TCP 
connections.8 

First, we define the class TCPConnect ion, which provides an interface for trans
mitting data and handles requests to change state. 

class TCPOctetStream; 
class TCPState; 

class TCPConnection { 
public: 

TCPConnection () ; 

void ActiveOpen(); 
void PassiveOpen(); 
void Close(); 

8This example is based on the TCP connection protocol described by Lynch and Rose [LR93J. 
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void Send(); 
void Acknowledge(); 
void Synchronize(); 

void ProcessOctet(TCPOctetStream*); 
private: 

friend class TCPState; 
void ChangeState(TCPState*); 

private: 
TCPState* _state; 

} ; 

TCPConnection keeps an instance of the TCPState class in the .state mem
ber variable. The class TCPState duplicates the state-changing interface of 
TCPConnection. Each TCPState operation takes a TCPConnection instance 
as a parameter, letting TCPState access data from TCPConnection and change 
the connection's state. 

class TCPState { 
public: 

virtual void Transmit(TCPConnection*, TCPOctetStream*); 
virtual void ActiveOpen(TCPConnection*); 
virtual void PassiveOpen(TCPConnection*); 
virtual void Close(TCPConnection*); 
virtual void Synchronize(TCPConnection*); 
virtual void Acknowledge(TCPConnection*); 
virtual void Send(TCPConnection*); 

protected: 
void ChangeState(TCPConnection*, TCPState*); 

>; 

TCPConnection delegates all state-specific requests to its TCPState instance 
.state. TCPConnection also provides an operation for changing this variable 
to a new TCPState. The constructor for TCPConnection initializes the object to 
the TCPClosed state (defined later). 

TCPConnection::TCPConnection () { 
_state = TCPClosed::Instance(); 

} 

void TCPConnection::ChangeState (TCPState* s) { 
_state = s; 

} 

void TCPConnection::ActiveOpen () { 
_state->ActiveOpen(this); 

} 

void TCPConnection::PassiveOpen () { 
_state->PassiveOpen(this); 

} 
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void TCPConnection::Close () { 
_state->Close(this); 

} 

void TCPConnection::Acknowledge () { 
_state->Acknowledge(this); 

} 

void TCPConnection::Synchronize () { 
_state->Synchronize(this); 

) 

TCPState implements default behavior for all requests delegated to it. It can 
also change the state of a TCPConnection with the ChangeState operation. 
TCPState is declared a friend of TCPConnection to give it privileged access to 
this operation. 

void TCPState::Transmit (TCPConnection*, TCPOctetStream*) {• } 
void TCPState::ActiveOpen (TCPConnection*) { } 
void TCPState::PassiveOpen (TCPConnection*) { } 
void TCPState::Close (TCPConnection*) { ) 
void TCPState:Synchronize (TCPConnection*) { } 

void TCPState::ChangeState (TCPConnection* t, TCPState* s) { 
t->ChangeState(s); 

} 

Subclasses of TCPState implement state-specific behavior. A TCP connec
tion can be in many states: Established, Listening, Closed, etc., and there's a 
subclass of TCPState for each state. We'll discuss three subclasses in detail: 
TCPEstablished, TCPListen, and TCPClosed. 

class TCPEstablished : public TCPState { 
public: 

static TCPState* Instance(); 

virtual void Transmit(TCPConnection*, TCPOctetStream*); 
virtual void Close(TCPConnection*); 

} ; 

class TCPListen : public TCPState { 
public: 

static TCPState* Instance(); 

virtual void Send(TCPConnection*); 
II ... 
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class TCPClosed : public TCPState { 
public: 

static TCPState* InstanceO; 

virtual void ActiveOpen(TCPConnection*); 
virtual void PassiveOpen(TCPConnection*); 
II ... 

} ; 

TCPState subclasses maintain no local state, so they can be shared, and only one 
instance of each is required. The unique instance of each TCPState subclass is 
obtained by the static Instance operation.9 

Each TCPState subclass implements state-specific behavior for valid requests in 
the state: 

void TCPClosed::ActiveOpen (TCPConnection* t) { 
// send SYN, receive SYN, ACK, etc. 

ChangeState(t, TCPEstablished::Instance()); 
} 

void TCPClosed::PassiveOpen (TCPConnection* t) { 
ChangeState(t, TCPListen::Instance()); 

} 

void TCPEstablished::Close (TCPConnection* t) { 
// send FIN, receive ACK of FIN 

ChangeState(t, TCPListen: :InstanceO ) ; 
} 

void TCPEstablished::Transmit ( 
TCPConnection* t, TCPOctetStream* o 

) ( 

t->ProcessOctet(o); 
} 

void TCPListen::Send (TCPConnection* t) { 
// send SYN, receive SYN, ACK, etc. 

ChangeState (t, TCPEstablished: : InstanceO ) ; 
} 

After performing state-specific work, these operations call the ChangeState 
operation to change the state of the TCPConnection. TCPConnection itself 
doesn't know a thing about the TCP connection protocol; it's the TCPState 
subclasses that define each state transition and action in TCP. 

9This makes each TCPState subclass a Singleton (see Singleton (127)). 
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Known Uses 
Johnson and Zweig [JZ91 ] characterize the State pattern and its application to TCP 
connection protocols. 

Most popular interactive drawing programs provide "tools" for performing op
erations by direct manipulation. For example, a line-drawing tool lets a user click 
and drag to create a new line. A selection tool lets the user select shapes. There's 
usually a palette of such tools to choose from. The user thinks of this activity as 
picking up a tool and wielding it, but in reality the editor's behavior changes 
with the current tool: When a drawing tool is active we create shapes; when the 
selection tool is active we select shapes; and so forth. We can use the State pattern 
to change the editor's behavior depending on the current tool. 

We can define an abstract Tool class from which to define subclasses that imple
ment tool-specific behavior. The drawing editor maintains a current Tool object 
and delegates requests to it. It replaces this object when the user chooses a new 
tool, causing the behavior of the drawing editor to change accordingly. 

This technique is used in both the HotDraw [Joh921 and Unidraw [VL90] drawing 
editor frameworks. It allows clients to define new kinds of tools easily. In HotDraw, 
the DrawingController class forwards the requests to the current Tool object. In 
Unidraw, the corresponding classes are Viewer and Tool. The following class 
diagram sketches the Tool and DrawingController interfaces: 

Coplien s Envelope-Letter idiom [Cop92] is related to State. Envelope-Letter is 
a technique for changing an object's class at run-time. The State pattern is more 
specific, focusing on how to deal with an object whose behavior depends on its 
state. 

Related Patterns 
The Flyweight pattern (195) explains when and how State objects can be shared. 
State objects are often Singletons (127). 
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STRATEGY Object Behavioral 

Intent 
Define a family of algorithms, encapsulate each one, and make them interchange
able. Strategy lets the algorithm vary independently from clients that use it. 

Also Known As 
Policy 

Motivation 
Many algorithms exist for breaking a stream of text into lines. Hard-wiring all such 
algorithms into the classes that require them isn't desirable for several reasons: 

• Clients that need linebreaking get more complex if they include the line-
breaking code. That makes clients bigger and harder to maintain, especially 
if they support multiple linebreaking algorithms. 

• Different algorithms will be appropriate at different times. We don't want to 
support multiple linebreaking algorithms if we don't use them all. 

• It's difficult to add new algorithms and vary existing ones when linebreaking 
is an integral part of a client. 

We can avoid these problems by defining classes that encapsulate different line-
breaking algorithms. An algorithm that's encapsulated in this way is called a 
strategy. 

Suppose a Composition class is responsible for maintaining and updating the 
linebreaks of text displayed in a text viewer. Linebreaking strategies aren't im
plemented by the class Composition. Instead, they are implemented separately 
by subclasses of the abstract Compositor class. Compositor subclasses implement 
different strategies: 
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• SimpleCompositor implements a simple strategy that determines linebreaks 
one at a time. 

• TeXCompositor implements the TpX algorithm for finding linebreaks. This 
strategy tries to optimize linebreaks globally, that is, one paragraph at a time. 

• ArrayCompositor implements a strategy that selects breaks so that each row 
has a fixed number of items. It's useful for breaking a collection of icons into 
rows, for example. 

A Composition maintains a reference to a Compositor object. Whenever a Compo
sition reformats its text, it forwards this responsibility to its Compositor object. The 
client of Composition specifies which Compositor should be used by installing 
the Compositor it desires into the Composition. 

Applicability 
Use the Strategy pattern when 

• many related classes differ only in their behavior. Strategies provide a way 
to configure a class with one of many behaviors. 

• you need different variants of an algorithm. For example, you might de
fine algorithms reflecting different space/time trade-offs. Strategies can be 
used when these variants are implemented as a class hierarchy of algo
rithms [H087]. 

• an algorithm uses data that clients shouldn't know about. Use the Strategy 
pattern to avoid exposing complex, algorithm-specific data structures. 

• a class defines many behaviors, and these appear as multiple conditional 
statements in its operations. Instead of many conditionals, move related 
conditional branches into their own Strategy class. 

Structure 
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Participants 
• Strategy (Compositor) 

- declares an interface common to all supported algorithms. Context uses 
this interface to call the algorithm defined by a ConcreteStrategy. 

• ConcreteStrategy (SimpleCompositor, TeXCompositor, ArrayCompositor) 

- implements the algorithm using the Strategy interface. 

• Context (Composition) 

- is configured with a ConcreteStrategy object. 

- maintains a reference to a Strategy object. 

- may define an interface that lets Strategy access its data. 

Collaborations 
• Strategy and Context interact to implement the chosen algorithm. A context 

may pass all data required by the algorithm to the strategy when the algorithm 
is called. Alternatively, the context can pass itself as an argument to Strategy 
operations. That lets the strategy call back on the context as required. 

• A context forwards requests from its clients to its strategy. Clients usually 
create and pass a ConcreteStrategy object to the context; thereafter, clients 
interact with the context exclusively. There is often a family of ConcreteStrategy 
classes for a client to choose from. 

Consequences 
The Strategy pattern has the following benefits and drawbacks: 

1. Families of related algorithms. Hierarchies of Strategy classes define a family of 
algorithms or behaviors for contexts to reuse. Inheritance can help factor out 
common functionality of the algorithms. 

2. An alternative to subclassing. Inheritance offers another way to support a 
variety of algorithms or behaviors. You can subclass a Context class directly 
to give it different behaviors. But this hard-wires the behavior into Context. It 
mixes the algorithm implementation with Context's, making Context harder 
to understand, maintain, and extend. And you can't vary the algorithm 
dynamically. You wind up with many related classes whose only difference 
is the algorithm or behavior they employ. Encapsulating the algorithm in 
separate Strategy classes lets you vary the algorithm independently of its 
context, making it easier to switch, understand, and extend. 

3. Strategies eliminate conditional statements. The Strategy pattern offers an alter
native to conditional statements for selecting desired behavior. When differ
ent behaviors are lumped into one class, it's hard to avoid using conditional 
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statements to select the right behavior. Encapsulating the behavior in sepa
rate Strategy classes eliminates these conditional statements. 
For example, without strategies, the code for breaking text into lines could 
look like 

void Composition::Repair () { 
switch (_breakingStrategy) { 
case SimpleStrategy: 

ComposeWithSimpleCompositor(); 
break; 

case TeXStrategy: 
ComposeWithTeXCompositor(); 
break; 

I I . . .  
} 
II merge results with existing composition, if necessary 

} 

The Strategy pattern eliminates this case statement by delegating the line-
breaking task to a Strategy object: 

void Composition::Repair () { 
_compositor->Compose(); 
// merge results with existing composition, if necessary 

} 

Code containing many conditional statements often indicates the need to 
apply the Strategy pattern. 

4. A choice of implementations. Strategies can provide different implementations 
of the same behavior. The client can choose among strategies with different 
time and space trade-offs. 

5. Clients must be aware of different Strategies. The pattern has a potential draw
back in that a client must understand how Strategies differ before it can 
select the appropriate one. Clients might be exposed to implementation is
sues. Therefore you should use the Strategy pattern only when the variation 
in behavior is relevant to clients. 

6. Communication overhead between Strategy and Context. The Strategy interface 
is shared by all ConcreteStrategy classes whether the algorithms they imple
ment are trivial or complex. Hence it's likely that some ConcreteStrategies 
won't use all the information passed to them through this interface; simple 
ConcreteStrategies may use none of it! That means there will be times when 
the context creates and initializes parameters that never get used. If this is 
an issue, then you'll need tighter coupling between Strategy and Context. 

7. Increased number of objects. Strategies increase the number of objects in an 
application. Sometimes you can reduce this overhead by implementing 
strategies as stateless objects that contexts can share. Any residual state is 
maintained by the context, which passes it in each request to the Strategy 
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object. Shared strategies should not maintain state across invocations. The 
Flyweight (195) pattern describes this approach in more detail. 

Implementation 
Consider the following implementation issues: 

1. Defining the Strategy and Context interfaces. The Strategy and Context interfaces 
must give a ConcreteStrategy efficient access to any data it needs from a 
context, and vice versa. 

One approach is to have Context pass data in parameters to Strategy 
operations—in other words, take the data to the strategy. This keeps Strategy 
and Context decoupled. On the other hand, Context might pass data the 
Strategy doesn't need. 

Another technique has a context pass itself as an argument, and the strategy 
requests data from the context explicitly. Alternatively, the strategy can store 
a reference to its context, eliminating the need to pass anything at all. Either 
way, the strategy can request exactly what it needs. But now Context must 
define a more elaborate interface to its data, which couples Strategy and 
Context more closely. 

The needs of the particular algorithm and its data requirements will deter
mine the best technique. 

2. Strategies as template parameters. In C++ templates can be used to configure 
a class with a strategy. This technique is only applicable if (1) the Strategy 
can be selected at compile-time, and (2) it does not have to be changed at 
run-time. In this case, the class to be configured (e.g., Context) is defined 
as a template class that has a Strategy class as a parameter: 

template cclass AStrategy> 
class Context { 

void Operation!) { theStrategy.DoAlgorithm{); } 
I I  . . .  

private: 
AStrategy theStrategy; 

} ; 

The class is then configured with a Strategy class when it's instantiated: 

class MyStrategy { 
public: 

void DoAlgorithm(); 
} ; 

Context<MyStrategy> aContext; 

With templates, there's no need to define an abstract class that defines the 
interface to the Strategy. Using Strategy as a template parameter also 
lets you bind a Strategy to its Context statically, which can increase 
efficiency. 
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3. Making Strategy objects optional. The Context class may be simplified if it's 
meaningful not to have a Strategy object. Context checks to see if it has 
a Strategy object before accessing it. If there is one, then Context uses it 
normally. If there isn't a strategy, then Context carries out default behavior. 
The benefit of this approach is that clients don't have to deal with Strategy 
objects at all unless they don't like the default behavior. 

Sample Code 
We'll give the high-level code for the Motivation example, which is based on the 
implementation of Composition and Compositor classes in Interviews [LCI+92]. 

The Composition class maintains a collection of Component instances, which 
represent text and graphical elements in a document. A composition arranges 
component objects into lines using an instance of a Compositor subclass, which 
encapsulates a linebreaking strategy. Each component has an associated natural 
size, stretchability, and shrinkability. The stretchability defines how much the 
component can grow beyond its natural size; shrinkability is how much it can 
shrink. The composition passes these values to a compositor, which uses them to 
determine the best location for linebreaks. 

class Composition { 
public: 

Composition(Compositor*); 
void Repair(); 

private: 
Compositor* _compositor; 
Component* _components; 
int _componentCount; 
int _lineWidth; 
int* _lineBreaks; 

int _lineCount; 
} ; 

// the list of components 
// the number of components 
II the Composition's line width 
// the position of linebreaks 
// in components 
// the number of lines 

When a new layout is required, the composition asks its compositor to determine 
where to place linebreaks. The composition passes the compositor three arrays 
that define natural sizes, stretchabilities, and shrinkabilities of the components. It 
also passes the number of components, how wide the line is, and an array that 
the compositor fills with the position of each linebreak. The compositor returns 
the number of calculated breaks. 

The Compositor interface lets the composition pass the compositor all the infor
mation it needs. This is an example of "taking the data to the strategy": 
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class Compositor { 
public: 

virtual int Compose( 

Coord natural!]. Coord stretch[], Coord shrink!], 
int componentCount, int lineWidth, int breaks[] 

) = 0; 
protected: 

Compositor(); 
} ; 

Note that Compositor is an abstract class. Concrete subclasses define specific 
linebreaking strategies. 

The composition calls its compositor in its Repair operation. Repair first initial
izes arrays with the natural size, stretchability, and shrinkability of each compo
nent (the details of which we omit for brevity). Then it calls on the compositor to 
obtain the linebreaks and finally lays out the components according to the breaks 
(also omitted): 

void Composition::Repair () { 
Coord* natural; 
Coord* stretchability; 
Coord* shrinkability; 
int componentCount; 
int* breaks; 

// prepare the arrays with the desired component sizes 
I I . . .  

II determine where the breaks are: 
int breakCount; 
breakCount = _compositor->Compose( 

natural, stretchability, shrinkability, 
componentCount, _lineWidth, breaks 

); 

// lay out components according to breaks 
I I . . .  

} 

Now let s look at the Compositor subclasses. SimpleCompositor examines 
components a line at a time to determine where breaks should go: 

class SimpleCompositor : public Compositor { 
public: 

SimpleCompositor]); 

virtual int Compose] 
Coord naturalf], Coord stretch!]. Coord shrink!], 
int componentCount, int lineWidth, int breaks!] 

) ; 
II ... 

}; 
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TeXCompositor uses a more global strategy. It examines a paragraph at a time, 
taking into account the components' size and stretchability. It also tries to give 
an even "color" to the paragraph by minimizing the whitespace between compo
nents. 

class TeXCompositor : public Compositor { 
public: 

TeXCompositor(); 

virtual int Compose( 
Coord natural[], Coord stretch[], Coord shrink[], 
int componentCount, int lineWidth, int breaks[] 

) ; 

I I . . .  
} ; 

ArrayCompositor breaks the components into lines at regular intervals. 

class ArrayCompositor : public Compositor { 
public: 

ArrayCompositor(int interval); 

virtual int Compose( 
Coord natural!], Coord stretch!], Coord shrink!], 
int componentCount, int lineWidth, int breaks!] 

) ; 

I I . . .  
} ; 

These classes don't use all the information passed in Compose. SimpleCom-
positor ignores the stretchability of the components, taking only their nat
ural widths into account. TeXCompositor uses all the information passed to it, 
whereas ArrayCompositor ignores everything. 

To instantiate Composition, you pass it the compositor you want to use: 

Composition* quick = new Composition(new SimpleCompositor) ; 
Composition* slick = new Composition(new TeXCompositor); 
Composition* iconic = new Composition(new ArrayCompositor(100) ) ; 

Compositor's interface is carefully designed to support all layout algorithms 
that subclasses might implement. You don't want to have to change this interface 
with every new subclass, because that will require changing existing subclasses. 
In general, the Strategy and Context interfaces determine how well the pattern 
achieves its intent. 

Known Uses 
Both ET++ [WGM88] and Interviews use strategies to encapsulate different line-
breaking algorithms as we've described. 
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In the RTL System for compiler code optimization [JML92], strategies define differ
ent register allocation schemes (RegisterAllocator) and instruction set scheduling 
policies (RISCscheduler, CISCscheduler). This provides flexibility in targeting the 
optimizer for different machine architectures. 

The ET++SwapsManager calculation engine framework computes prices for dif
ferent financial instruments [EG92]. Its key abstractions are Instrument and Yield-
Curve. Different instruments are implemented as subclasses of Instrument. The 
YieldCurve calculates discount factors to present value of future cash flows. Both 
of these classes delegate some behavior to Strategy objects. The framework pro
vides a family of ConcreteStrategy classes for generating cash flows, valuing 
swaps, and calculating discount factors. You can create new calculation engines 
by configuring Instrument and YieldCurve with the different ConcreteStrategy 
objects. This approach supports mixing and matching existing Strategy imple
mentations as well as defining new ones. 

The Booch components [BV901 use strategies as template arguments. The Booch 
collection classes support three different kinds of memory allocation strategies: 
managed (allocation out of a pool), controlled (allocations/deallocations are pro
tected by locks), and unmanaged (the normal memory allocator). These strategies 
are passed as template arguments to a collection class when it's instantiated. For 
example, an UnboundedCollection that uses the unmanaged strategy is instanti
ated as UnboundedCollection<MyItemType*, Unmanaged>. 

RApp is a system for integrated circuit layout [GA89, AG90]. RApp must lay out 
and route wires that connect subsystems on the circuit. Routing algorithms in 
RApp are defined as subclasses of an abstract Router class. Router is a Strategy 
class. 

Borland's ObjectWindows [Bor94] uses strategies in dialogs boxes to ensure that 
the user enters valid data. For example, numbers might have to be in a certain 
range, and a numeric entry field should accept only digits. Validating that a string 
is correct can require a table look-up. 

ObjectWindows uses Validator objects to encapsulate validation strategies. Val
idators are examples of Strategy objects. Data entry fields delegate the validation 
strategy to an optional Validator object. The client attaches a validator to a field 
if validation is required (an example of an optional strategy). When the dialog is 
closed, the entry fields ask their validators to validate the data. The class library 
provides validators for common cases, such as a Range Validator for numbers. 
New client-specific validation strategies can be defined easily by subclassing the 
Validator class. 

Related Patterns 
Flyweight (195): Strategy objects often make good flyweights. 
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TEMPLATE METHOD ciass Behavioral 

Intent 
Define the skeleton of an algorithm in an operation, deferring some steps to 
subclasses. Template Method lets subclasses redefine certain steps of an algorithm 
without changing the algorithm's structure. 

Motivation 
Consider an application framework that provides Application and Document 
classes. The Application class is responsible for opening existing documents stored 
in an external format, such as a file. A Document object represents the information 
in a document once it's read from the file. 

Applications built with the framework can subclass Application and Document to 
suit specific needs. For example, a drawing application defines Draw Application 
and DrawDocument subclasses; a spreadsheet application defines Spreadsheet-
Application and SpreadsheetDocument subclasses. 

The abstract Application class defines the algorithm for opening and reading a 
document in its OpenDocument operation: 

void Application::OpenDocument (const char* name) { 
if (!CanOpenDocument(name)) { 

// cannot handle this document 
return; 

} 
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Document* doc = DoCreateDocument(); 

if (doc) { 
_docs->AddDocument(doc); 
AboutToOpenDocument(doc); 
doc->Open(); 
doc->DoRead(); 

} 
} 

OpenDocument defines each step for opening a document. It checks if the docu
ment can be opened, creates the application-specific Document object, adds it to 
its set of documents, and reads the Document from a file. 

We call OpenDocument a template method. A template method defines an algo
rithm in terms of abstract operations that subclasses override to provide concrete 
behavior. Application subclasses define the steps of the algorithm that check if 
the document can be opened (CanOpenDocument) and that create the Document 
(DoCreateDocument). Document classes define the step that reads the document 
(DoRead). The template method also defines an operation that lets Application 
subclasses know when the document is about to be opened (AboutToOpenDocu
ment), in case they care. 

By defining some of the steps of an algorithm using abstract operations, the tem
plate method fixes their ordering, but it lets Application and Document subclasses 
vary those steps to suit their needs. 

Applicability 
The Template Method pattern should be used 

• to implement the invariant parts of an algorithm once and leave it up to 
subclasses to implement the behavior that can vary. 

• when common behavior among subclasses should be factored and localized 
in a common class to avoid code duplication. This is a good example of 
"refactoring to generalize" as described by Opdyke and Johnson [OJ93], 
You first identify the differences in the existing code and then separate the 
differences into new operations. Finally, you replace the differing code with 
a template method that calls one of these new operations. 

• to control subclasses extensions. You can define a template method that calls 
"hook" operations (see Consequences) at specific points, thereby permitting 
extensions only at those points. 
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AbstractClass 

TemplateMethod() o- -
PrimitiveOperation 1() 
PrimitiveOperation2() 

TemplateMethod() o- -
PrimitiveOperation 1() 
PrimitiveOperation2() 

PrimitiveOperation 1() 

PrimitiveOperation2() 

~ 
ConcreteClass 

PrimitiveOperation1() 
PrimiliveOperation2() 

Participants 
• AbstractClass (Application) 

- defines abstract primitive operations that concrete subclasses define to 
implement steps of an algorithm. 

- implements a template method defining the skeleton of an algorithm. The 
template method calls primitive operations as well as operations defined 
in AbstractClass or those of other objects. 

• ConcreteClass (MyApplication) 

- implements the primitive operations to carry out subclass-specific steps of 
the algorithm. 

Collaborations 
• ConcreteClass relies on AbstractClass to implement the invariant steps of the 

algorithm. 

Consequences 
Template methods are a fundamental technique for code reuse. They are partic
ularly important in class libraries, because they are the means for factoring out 
common behavior in library classes. 

Template methods lead to an inverted control structure that's sometimes referred 
to as "the Hollywood principle," that is, "Don't call us, we'll call you" [Swe85]. 
This refers to how a parent class calls the operations of a subclass and not the 
other way around. 

Template methods tend to call one of several kinds of operations: 

• concrete operations (either on the ConcreteClass or on client classes); 
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• concrete AbstractClass operations (i.e., operations that are generally useful 
to subclasses); 

• primitive operations (i.e., abstract operations); 

• factory methods (see Factory Method (107)); and 

• hook operations, which provide default behavior that subclasses can extend 
if necessary. A hook operation often does nothing by default. 

It's important for template methods to specify which operations are hooks (may 
be overridden) and which are abstract operations (must be overridden). To reuse 
an abstract class effectively, subclass writers must understand which operations 
are designed for overriding. 

A subclass can extend a parent class operation's behavior by overriding the oper
ation and calling the parent operation explicitly: 

void DerivedClass::Operation () { 
// DerivedClass extended behavior 
ParentClass::Operation(); 

} 

Unfortunately, it's easy to forget to call the inherited operation. We can transform 
such an operation into a template method to give the parent control over how 
subclasses extend it. The idea is to call a hook operation from a template method 
in the parent class. Then subclasses can then override this hook operation: 

void ParentClass::Operation () { 
// ParentClass behavior 
HookOperation(); 

} 

HookOperation does nothing in ParentClass: 

void ParentClass::HookOperation () { } 

Subclasses override HookOperation to extends its behavior: 

void DerivedClass::HookOperation () { 
// derived class extension 

} 

Implementation 
Three implementation issues are worth noting: 

1. Using C++ access control. In C++, the primitive operations that a template 
method calls can be declared protected members. This ensures that they 
are only called by the template method. Primitive operations that must be 
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overridden are declared pure virtual. The template method itself should not 
be overridden; therefore you can make the template method a nonvirtual 
member function. 

2. Minimizing primitive operations. An important goal in designing template 
methods is to minimize the number of primitive operations that a subclass 
must override to flesh out the algorithm. The more operations that need 
overriding, the more tedious things get for clients. 

3. Naming conventions. You can identify the operations that should be overrid
den by adding a prefix to their names. For example, the MacApp framework 
for Macintosh applications [App89] prefixes template method names with 
"Do-": "DoCreateDocument", "DoRead", and so forth. 

Sample Code 
The following C++ example shows how a parent class can enforce an invariant for 
its subclasses. The example comes from NeXT's AppKit [Add94], Consider a class 
View that supports drawing on the screen. View enforces the invariant that its 
subclasses can draw into a view only after it becomes the "focus," which requires 
certain drawing state (for example, colors and fonts) to be set up properly. 

We can use a Display template method to set up this state. View defines two 
concrete operations, SetFocus and ResetFocus, that set up and clean up the 
drawing state, respectively. View's DoDi splay hook operation performs the ac
tual drawing. Display calls SetFocus before DoDi splay to set up the drawing 
state; Display calls ResetFocus afterwards to release the drawing state. 

void View::Display () { 
SetFocus(); 
DoDisplay(); 
ResetFocus(); 

} 

To maintain the invariant, the View's clients always call Display, and View 
subclasses always override DoDisplay. 

DoDisplay does nothing in View: 

void View::DoDisplay () { } 

Subclasses override it to add their specific drawing behavior: 

void MyView::DoDisplay () { 
// render the view's contents 

} 

Known Uses 
Template methods are so fundamental that they can be found in almost every 
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abstract class. Wirfs-Brock et al. [WBWW90, WBJ90] provide a good overview 
and discussion of template methods. 

Related Patterns 
Factory Methods (107) are often called by template methods. In the Motivation 
example, the factory method DoCreateDocument is called by the template method 
OpenDocument. 

Strategy (315): Template methods use inheritance to vary part of an algorithm. 
Strategies use delegation to vary the entire algorithm. 
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VISITOR Object Behavioral 

Intent 
Represent an operation to be performed on the elements of an object structure. Vis
itor lets you define a new operation without changing the classes of the elements 
on which it operates. 

Motivation 
Consider a compiler that represents programs as abstract syntax trees. It will need 
to perform operations on abstract syntax trees for "static semantic" analyses like 
checking that all variables are defined. It will also need to generate code. So it might 
define operations for type-checking, code optimization, flow analysis, checking 
for variables being assigned values before they're used, and so on. Moreover, 
we could use the abstract syntax trees for pretty-printing, program restructuring, 
code instrumentation, and computing various metrics of a program. 

Most of these operations will need to treat nodes that represent assignment state
ments differently from nodes that represent variables or arithmetic expressions. 
Hence there will be one class for assignment statements, another for variable 
accesses, another for arithmetic expressions, and so on. The set of node classes 
depends on the language being compiled, of course, but it doesn't change much 
for a given language. 

This diagram shows part of the Node class hierarchy. The problem here is that 
distributing all these operations across the various node classes leads to a system 
that's hard to understand, maintain, and change. It will be confusing to have type-
checking code mixed with pretty-printing code or flow analysis code. Moreover, 
adding a new operation usually requires recompiling all of these classes. It would 
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be better if each new operation could be added separately, and the node classes 
were independent of the operations that apply to them. 

We can have both by packaging related operations from each class in a separate 
object, called a visitor, and passing it to elements of the abstract syntax tree as it's 
traversed. When an element "accepts" the visitor, it sends a request to the visitor 
that encodes the element's class. It also includes the element as an argument. The 
visitor will then execute the operation for that element—the operation that used 
to be in the class of the element. 

For example, a compiler that didn't use visitors might type-check a procedure 
by calling the TypeCheck operation on its abstract syntax tree. Each of the nodes 
would implement TypeCheck by calling TypeCheck on its components (see the 
preceding class diagram). If the compiler type-checked a procedure using visitors, 
then it would create a TypeCheckingVisitor object and call the Accept operation 
on the abstract syntax tree with that object as an argument. Each of the nodes 
would implement Accept by calling back on the visitor: an assignment node 
calls VisitAssignment operation on the visitor, while a variable reference calls 
VisitVariableReference. What used to be the TypeCheck operation in class Assign-
mentNode is now the VisitAssignment operation on TypeCheckingVisitor. 

To make visitors work for more than just type-checking, we need an abstract parent 
class NodeVisitor for all visitors of an abstract syntax tree. NodeVisitor must 
declare an operation for each node class. An application that needs to compute 
program metrics will define new subclasses of NodeVisitor and will no longer 
need to add application-specific code to the node classes. The Visitor pattern 
encapsulates the operations for each compilation phase in a Visitor associated 
with that phase. 
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With the Visitor pattern, you define two class hierarchies: one for the elements 
being operated on (the Node hierarchy) and one for the visitors that define op
erations on the elements (the NodeVisitor hierarchy). You create a new operation 
by adding a new subclass to the visitor class hierarchy. As long as the grammar 
that the compiler accepts doesn't change (that is, we don't have to add new Node 
subclasses), we can add new functionality simply by defining new NodeVisitor 
subclasses. 

Applicability 
Use the Visitor pattern when 

• an object structure contains many classes of objects with differing interfaces, 
and you want to perform operations on these objects that depend on their 
concrete classes. 

• many distinct and unrelated operations need to be performed on objects in an 
object structure, and you want to avoid "polluting" their classes with these 
operations. Visitor lets you keep related operations together by defining them 
in one class. When the object structure is shared by many applications, use 
Visitor to put operations in just those applications that need them. 

• the classes defining the object structure rarely change, but you often want 
to define new operations over the structure. Changing the object structure 
classes requires redefining the interface to all visitors, which is potentially 
costly. If the object structure classes change often, then it's probably better to 
define the operations in those classes. 
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Structure 

Participants 
• Visitor (NodeVisitor) 

- declares a Visit operation for each class of ConcreteElement in the object 
structure. The operation's name and signature identifies the class that sends 
the Visit request to the visitor. That lets the visitor determine the concrete 
class of the element being visited. Then the visitor can access the element 
directly through its particular interface. 

• ConcreteVisitor (TypeCheckingVisitor) 

- implements each operation declared by Visitor. Each operation implements 
a fragment of the algorithm defined for the corresponding class of object 
in the structure. ConcreteVisitor provides the context for the algorithm 
and stores its local state. This state often accumulates results during the 
traversal of the structure. 

• Element (Node) 

- defines an Accept operation that takes a visitor as an argument. 
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• ConcreteElement (AssignmentNode,VariableRefNode) 

- implements an Accept operation that takes a visitor as an argument. 

• ObjectStructure (Program) 

- can enumerate its elements. 

- may provide a high-level interface to allow the visitor to visit its elements. 

- may either be a composite (see Composite (163)) or a collection such as a 
list or a set. 

Collaborations 
• A client that uses the Visitor pattern must create a ConcreteVisitor object and 

then traverse the object structure, visiting each element with the visitor. 
• When an element is visited, it calls the Visitor operation that corresponds to 

its class. The element supplies itself as an argument to this operation to let the 
visitor access its state, if necessary. 
The following interaction diagram illustrates the collaborations between an 
object structure, a visitor, and two elements: 

anObjectStructure aConcreteElementA aConcreteElementB aCoricreteVisitor 

Accept(aVisitor) 

Accept(aVlsitor) 

L 
VisitConcreteElementA(aConcreteElementA) 

Accept(aVisitor) 

Accept(aVlsitor) 

[ OperationA() 

Accept(aVisitor) 

Accept(aVlsitor) 

I 

T 

VlsitConcreteElementB(aConcreteElementB) 

I 

T 

VlsitConcreteElementB(aConcreteElementB) 

I 

T 

OperationBQ I 

T 

Consequences 
Some of the benefits and liabilities of the Visitor pattern are as follows: 

1. Visitor makes adding new operations easy. Visitors make it easy to add operations 
that depend on the components of complex objects. You can define a new 
operation over an object structure simply by adding a new visitor. In contrast, 
if you spread functionality over many classes, then you must change each 
class to define a new operation. 

2. A visitor gathers related operations and separates unrelated ones. Related behav
ior isn't spread over the classes defining the object structure; it's localized 
in a visitor. Unrelated sets of behavior are partitioned in their own visitor 
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subclasses. That simplifies both the classes defining the elements and the al
gorithms defined in the visitors. Any algorithm-specific data structures can 
be hidden in the visitor. 

3. Adding new ConcreteElement classes is hard. The Visitor pattern makes it hard 
to add new subclasses of Element. Each new ConcreteElement gives rise to 
a new abstract operation on Visitor and a corresponding implementation 
in every Concrete Visitor class. Sometimes a default implementation can be 
provided in Visitor that can be inherited by most of the Concrete Visitors, but 
this is the exception rather than the rule. 
So the key consideration in applying the Visitor pattern is whether you are 
mostly likely to change the algorithm applied over an object structure or 
the classes of objects that make up the structure. The Visitor class hierarchy 
can be difficult to maintain when new ConcreteElement classes are added 
frequently. In such cases, it's probably easier just to define operations on the 
classes that make up the structure. If the Element class hierarchy is stable, 
but you are continually adding operations or changing algorithms, then the 
Visitor pattern will help you manage the changes. 

4. Visiting across class hierarchies. An iterator (see Iterator (257)) can visit the 
objects in a structure as it traverses them by calling their operations. But an 
iterator can't work across object structures with different types of elements. 
For example, the Iterator interface defined on page 263 can access only objects 
of type Item: 

template <class Item> 
class Iterator { 

I I . . .  
Item Currentltem() const; 

} ; 

This implies that all elements the iterator can visit have a common parent 
class Item. 

Visitor does not have this restriction. It can visit objects that don't have a 
common parent class. You can add any type of object to a Visitor interface. 
For example, in 

class Visitor { 
public: 

I I . . .  
void VisitMyType(MyType*); 
void VisitYourType(YourType*); 

} ; 

MyType and YourType do not have to be related through inheritance at all. 

5. Accumulating state. Visitors can accumulate state as they visit each element 
in the object structure. Without a visitor, this state would be passed as extra 
arguments to the operations that perform the traversal, or they might appear 
as global variables. 
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6. Breaking encapsulation. Visitor's approach assumes that the ConcreteElement 
interface is powerful enough to let visitors do their job. As a result, the pattern 
often forces you to provide public operations that access an element's internal 
state, which may compromise its encapsulation. 

Implementation 
Each object structure will have an associated Visitor class. This abstract visitor 
class declares a VisitConcreteElement operation for each class of ConcreteEle
ment defining the object structure. Each Visit operation on the Visitor declares 
its argument to be a particular ConcreteElement, allowing the Visitor to access 
the interface of the ConcreteElement directly. ConcreteVisitor classes override 
each Visit operation to implement visitor-specific behavior for the corresponding 
ConcreteElement class. 

The Visitor class would be declared like this in C++: 

class Visitor { 
public: 

virtual void VisitElementA(ElementA*); 
virtual void VisitElementB(ElementB*); 

// and so on for other concrete elements 
protected: 

Visitor(); 
} ; 

Each class of ConcreteElement implements an Accept operation that calls the 
matching Visit. . . operation on the visitor for that ConcreteElement. Thus the 
operation that ends up getting called depends on both the class of the element 
and the class of the visitor.10 

The concrete elements are declared as 

class Element { 
public: 

virtual "Element(); 
virtual void Accept(Visitors) = 0; 

protected: 
Element() ; 

} ; 

10We could use function overloading to give these operations the same simple name, like Visit, since 
the operations are already differentiated by the parameter they're passed. There are pros and cons o sue 
overloading. On the one hand, it reinforces the fact that each operation involves the same analysis, all ei on 
a different argument. On the other hand, that might make what's going on at the call site less o vious o 
someone reading the code. It really boils down to whether you believe function overloading is goo or no . 
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class ElementA : public Element { 
public: 

ElementA(); 
virtual void Accept(Visitors v) { v.VisitElementA(this); } 

} ; 

class ElementB : public Element { 
public: 

ElementB(); 
virtual void Accept(Visitors v) { v.VisitElementB(this); } 

} ; 

A CompositeElement class might implement Accept like this: 

class CompositeElement : public Element { 
public: 

virtual void Accept(Visitors); 
private: 

List<Element*>* _children; 
} ; 

void CompositeElement::Accept (Visitors v) { 
ListIterator<Element*> i(_children); 

for (i. First (); Si.IsDoneO; i.NextO) ( 
i.Currentltem()->Accept(v); 

} 
v.VisitCompositeElement(this); 

} 

Here are two other implementation issues that arise when you apply the Visitor 
pattern: 

1. Double dispatch. Effectively, the Visitor pattern lets you add operations to 
classes without changing them. Visitor achieves this by using a technique 
called double-dispatch. It's a well-known technique. In fact, some program
ming languages support it directly (CLOS, for example). Languages like C++ 
and Smalltalk support single-dispatch. 
In single-dispatch languages, two criteria determine which operation will 
fulfill a request: the name of the request and the type of receiver. For ex
ample, the operation that a GenerateCode request will call depends on the 
type of node object you ask. In C++, calling GenerateCode on an instance of 
Var iableRef Node will call Var iableRefNode: : GenerateCode (which 
generates code for a variable reference). Calling GenerateCode on an 
AssignmentNode will call AssignmentNode: :GenerateCode (which 
will generate code for an assignment). The operation that gets executed 
depends both on the kind of request and the type of the receiver. 
"Double-dispatch" simply means the operation that gets executed depends 
on the kind of request and the types of two receivers. Accept is a double-
dispatch operation. Its meaning depends on two types: the Visitor's and the 
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Element's. Double-dispatching lets visitors request different operations on 
each class of element.11 

This is the key to the Visitor pattern: The operation that gets executed de
pends on both the type of Visitor and the type of Element it visits. Instead of 
binding operations statically into the Element interface, you can consolidate 
the operations in a Visitor and use Accept to do the binding at run-time. Ex
tending the Element interface amounts to defining one new Visitor subclass 
rather than many new Element subclasses. 

2. Who is responsible for traversing the object structure? A visitor must visit each 
element of the object structure. The question is, how does it get there? We can 
put responsibility for traversal in any of three places: in the object structure, 
in the visitor, or in a separate iterator object (see Iterator (257)). 

Often the object structure is responsible for iteration. A collection will simply 
iterate over its elements, calling the Accept operation on each. A composite 
will commonly traverse itself by having each Accept operation traverse the 
element s children and call Accept on each of them recursively. 

Another solution is to use an iterator to visit the elements. In C++, you could 
use either an internal or external iterator, depending on what is available 
and what is most efficient. In Smalltalk, you usually use an internal iterator 
using do: and a block. Since internal iterators are implemented by the object 
structure, using an internal iterator is a lot like making the object structure 
responsible for iteration. The main difference is that an internal iterator will 
not cause double-dispatching—it will call an operation on the visitor with 
an element as an argument as opposed to calling an operation on the element 
with the visitor as an argument. But it's easy to use the Visitor pattern with 
an internal iterator if the operation on the visitor simply calls the operation 
on the element without recursing. 

You could even put the traversal algorithm in the visitor, although you'll end 
up duplicating the traversal code in each Concrete Visitor for each aggregate 
ConcreteElement. The main reason to put the traversal strategy in the visitor 
is to implement a particularly complex traversal, one that depends on the 
results of the operations on the object structure. We'll give an example of 
such a case in the Sample Code. 

Sample Code 
Because visitors are usually associated with composites, we'll use the Equipment 
classes defined in the Sample Code of Composite (163) to illustrate the Visitor 
pattern. We will use Visitor to define operations for computing the inventory of 
materials and the total cost for a piece of equipment. The Equipment classes are 

11 If we can have double-dispatch, then why not triple or quadruple, or any other number? Actually, double-
dispatch is just a special case of multiple dispatch, in which the operation is chosen based on any number 
of types. (CLOS actually supports multiple dispatch.) Languages that support double- or multiple dispatch 
lessen the need for the Visitor pattern. 
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so simple that using Visitor isn't really necessary, but they make it easy to see 
what's involved in implementing the pattern. 

Here again is the Equipment class from Composite (163). We've augmented it 
with an Accept operation to let it work with a visitor. 

class Equipment { 
public: 

virtual "Equipment(); 

const char* Name() { return _name; } 

virtual Watt Power(); 
virtual Currency NetPriceO; 
virtual Currency DiscountPrice(); 

virtual void Accept(EquipmentVisitor&); 
protected: 

Equipment(const char*); 
private: 

const char* _name; 
} ; 

The Equipment operations return the attributes of a piece of equipment, such as 
its power consumption and cost. Subclasses redefine these operations appropri
ately for specific types of equipment (e.g., a chassis, drives, and planar boards). 

The abstract class for all visitors of equipment has a virtual function for each 
subclass of equipment, as shown next. All of the virtual functions do nothing by 
default. 

class EquipmentVisitor { 
public: 

virtual "EquipmentVisitor(); 

virtual void VisitFloppyDisk(FloppyDisk*); 
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*); 
virtual void VisitBus(Bus*); 

// and so on for other concrete subclasses of Equipment 
protected: 

EquipmentVisitor() ; 
} ; 

Equipment subclasses define Accept in basically the same way: It calls the 
EquipmentVisitor operation that corresponds to the class that received the 
Accept request, like this: 

void FloppyDisk::Accept (EquipmentVisitor& visitor) { 
visitor.VisitFloppyDisk(this); 

} 
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Equipment that contains other equipment (in particular, subclasses of Com
pos iteEquipment in the Composite pattern) implements Accept by iterating 
over their children and calling Accept on each of them. They then call the Visit 
operation on themselves. For example, Chassis : : Accept could traverse all the 
parts in the chassis as follows: 

void Chassis::Accept (EquipmentVisitor& visitor) { 
for ( 

ListIterator<Equipment*> i(_parts); 
!i.IsDone(); 
i.Next() 

) { 

i.Currentltem()->Accept(visitor); 
} 

visitor.VisitChassis(this); 
} 

Subclasses of EquipmentVisitor define particular algorithms over the equip
ment structure. The Pr ic ingVi s i tor computes the cost of the equipment struc
ture. It computes the net price of all simple equipment (e.g., floppies) and the 
discount price of all composite equipment (e.g., chassis and buses). 

class PricingVisitor : public EquipmentVisitor { 
public: 

PricingVisitor(); 

Currency& GetTotalPrice(); 

virtual void VisitFloppyDisk(FloppyDisk*); 
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*); 
virtual void VisitBus(Bus*); 
I I . . .  

private: 
Currency _total; 

} ; 

void PricingVisitor::VisitFloppyDisk (FloppyDisk* e) { 
_total += e->NetPrice(); 

} 

void PricingVisitor::VisitChassis (Chassis* e) { 
_total += e->DiscountPrice(); 

} 

PricingVisitor will compute the total cost of all nodes in the equipment 
structure. Note that PricingVisitor chooses the appropriate pricing policy 
lor a class of equipment by dispatching to the corresponding member function. 
What s more, we can change the pricing policy of an equipment structure just by 
changing the PricingVisitor class. 
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We can define a visitor for computing inventory like this: 

class InventoryVisitor : public EquipmentVisitor { 
public: 

InventoryVisitor(); 

Inventory& GetInventory(); 

virtual void VisitFloppyDisk(FloppyDisk*); 
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*); 
virtual void VisitBus(Bus*); 
I I . . .  

private: 
Inventory _inventory; 

} ; 

The InventoryVisitor accumulates the totals for each type of equipment in 
the object structure. InventoryVisitor uses an Inventory class that defines 
an interface for adding equipment (which we won't bother defining here). 

void InventoryVisitor::VisitFloppyDisk (FloppyDisk* e) { 
_inventory.Accumulate(e); 

} 

void InventoryVisitor::VisitChassis (Chassis* e) { 
_inventory.Accumulate(e); 

} 

Here's how we can use an InventoryVisitor on an equipment structure: 

Equipment * component; 
InventoryVisitor visitor; 

component->Accept(visitor); 
cout << "Inventory " 

< < component->Name() 
« visitor.Getlnventory(); 

Now we'll show how to implement the Smalltalk example from the Interpreter 
pattern (see page 248) with the Visitor pattern. Like the previous example, this 
one is so small that Visitor probably won't buy us much, but it provides a good 
illustration of how to use the pattern. Further, it illustrates a situation in which 
iteration is the visitor's responsibility. 

The object structure (regular expressions) is made of four classes, and all of 
them have an accept: method that takes the visitor as an argument. In class 
SequenceExpression, the accept: method is 
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accept: aVisitor 
aVisitor visitSequence: self 

In class RepeatExpression, the accept: method sends the visitRepeat: 
message. In class AlternationExpression, it sends the visitAlterna-
tion: message. In class LiteralExpression, it sends the visitLiteral: 
message. 

The four classes also must have accessing functions that the visitor can use. 
For SequenceExpression these are expressionl and expression2; for 
AlternationExpression these are alternativel and alternative2; for 
RepeatExpression it is repetition; and for LiteralExpression these are 
components. 

The Concrete Visitor class is REMatchingVisitor. It is responsible for the tra
versal because its traversal algorithm is irregular. The biggest irregularity is 
that a RepeatExpression will repeatedly traverse its component. The class 
REMatchingVisitor has an instance variable inputstate. Its methods are 
essentially the same as the match: methods of the expression classes in the In
terpreter pattern except they replace the argument named inputstate with the 
expression node being matched. However, they still return the set of streams that 
the expression would match to identify the current state. 

visitSequence: sequenceExp 
inputstate := sequenceExp expressionl accept: self. 
sequenceExp expression2 accept: self. 

visitRepeat: repeatExp 
I finalState I 
finalState := inputstate copy. 
[inputstate isEmpty] 

whileFalse: 

[inputstate := repeatExp repetition accept: self. 
finalState addAll: inputstate]. 

finalState 

visitAlternation: alternateExp 
I finalState originalState I 
originalstate := inputstate. 
finalState := alternateExp alternativel accept: self, 
inputstate := originalstate. 
finalState addAll: (alternateExp alternative2 accept: self). 
finalState 
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visitLiteral: literalExp 
I finalState tStream I 
finalState := Set new. 
inputState 

do: 
[:stream I tStream := stream copy. 

(tStream nextAvailable: 
literalExp components size 

) = literalExp components 
ifTrue: [finalState add: tStream] 

] • 
finalState 

Known Uses 
The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator. 
It's used primarily for algorithms that analyze source code. It isn't used for code 
generation or pretty-printing, although it could be. 

IRIS Inventor [Str93] is a toolkit for developing 3-D graphics applications. Inventor 
represents a three-dimensional scene as a hierarchy of nodes, each representing 
either a geometric object or an attribute of one. Operations like rendering a scene 
or mapping an input event require traversing this hierarchy in different ways. 
Inventor does this using visitors called "actions." There are different visitors for 
rendering, event handling, searching, filing, and determining bounding boxes. 

To make adding new nodes easier, Inventor implements a double-dispatch scheme 
for C++. The scheme relies on run-time type information and a two-dimensional 
table in which rows represent visitors and columns represent node classes. The 
cells store a pointer to the function bound to the visitor and node class. 

Mark Linton coined the term "Visitor" in the X Consortium's Fresco Application 
Toolkit specification [LP93]. 

Related Patterns 
Composite (163): Visitors can be used to apply an operation over an object structure 
defined by the Composite pattern. 

Interpreter (243): Visitor may be applied to do the interpretation. 
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Discussion of Behavioral Patterns 

Encapsulating Variation 

Encapsulating variation is a theme of many behavioral patterns. When an aspect of 
a program changes frequently, these patterns define an object that encapsulates that 
aspect. Then other parts of the program can collaborate with the object whenever they 
depend on that aspect. The patterns usually define an abstract class that describes the 
encapsulating object, and the pattern derives its name from that object.12 For example, 

• a Strategy object encapsulates an algorithm (Strategy (315)), 

• a State object encapsulates a state-dependent behavior (State (305)), 

• a Mediator object encapsulates the protocol between objects (Mediator (273)), and 

• an Iterator object encapsulates the way you access and traverse the components 
of an aggregate object (Iterator (257)). 

These patterns describe aspects of a program that are likely to change. Most patterns 
have two kinds of objects: the new object(s) that encapsulate the aspect, and the existing 
object(s) that use the new ones. Usually the functionality of new objects would be an 
integral part of the existing objects were it not for the pattern. For example, code for 
a Strategy would probably be wired into the strategy's Context, and code for a State 
would be implemented directly in the state's Context. 

But not all object behavioral patterns partition functionality like this. For example, 
Chain of Responsibility (223) deals with an arbitrary number of objects (i.e., a chain), 
all of which may already exist in the system. 

Chain of Responsibility illustrates another difference in behavioral patterns: Not all 
define static communication relationships between classes. Chain of Responsibility 
prescribes communication between an open-ended number of objects. Other patterns 
involve objects that are passed around as arguments. 

Objects as Arguments 

Several patterns introduce an object that's always used as an argument. One of these is 
Visitor (331). A Visitor object invokes a polymorphic Accept operation on the objects it 
visits. The visitor is never considered a part of those objects, even though the conven
tional alternative to the pattern is to distribute Visitor code across the object structure 
classes. 

12lniS-7xth<;rie mns thrOUgh other kinds of patterns, too. AbstractFactory (87), Builder (97), and Proto
type (117) all encapsulate knowledge about how objects are created. Decorator (175) encapsulates responsi
bility that can be added to an object. Bridge (151) separates an abstraction from its implementation, letting 
them vary independently. 
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Other patterns define objects that act as magic tokens to be passed around and invoked 
at a later time. Both Command (233) and Memento (283) fall into this category. In 
Command, the token represents a request; in Memento, it represents the internal state 
of an object at a particular time. In both cases, the token can have a complex internal 
representation, but the client is never aware of it. But even here there are differences. 
Polymorphism is important in the Command pattern, because executing the Command 
object is a polymorphic operation. In contrast, the Memento interface is so narrow that 
a memento can only be passed as a value. So it's likely to present no polymorphic 
operations at all to its clients. 

Should Communication be Encapsulated or Distributed? 

Mediator (273) and Observer (293) are competing patterns. The difference between 
them is that Observer distributes communication by introducing Observer and Subject 
objects, whereas a Mediator object encapsulates the communication between other 
objects. 

In the Observer pattern, there is no single object that encapsulates a constraint. Instead, 
the Observer and the Subject must cooperate to maintain the constraint. Communica
tion patterns are determined by the way observers and subjects are interconnected: a 
single subject usually has many observers, and sometimes the observer of one subject is 
a subject of another observer. The Mediator pattern centralizes rather than distributes. 
It places the responsibility for maintaining a constraint squarely in the mediator. 

We've found it easier to make reusable Observers and Subjects than to make reusable 
Mediators. The Observer pattern promotes partitioning and loose coupling between 
Observer and Subject, and that leads to finer-grained classes that are more apt to be 
reused. 

On the other hand, it's easier to understand the flow of communication in Mediator 
than in Observer. Observers and subjects are usually connected shortly after they're 
created, and it s hard to see how they are connected later in the program. If you know 
the Observer pattern, then you understand that the way observers and subjects are 
connected is important, and you also know what connections to look for. However, the 
indirection that Observer introduces will still make a system harder to understand. 

Observers in Smalltalk can be parameterized with messages to access the Subject state, 
and so they are even more reusable than they are in C++. This makes Observer more 
attractive than Mediator in Smalltalk. Thus a Smalltalk programmer will often use 
Observer where a C++ programmer would use Mediator. 

Decoupling Senders and Receivers 

When collaborating objects refer to each other directly, they become dependent on 
each other, and that can have an adverse impact on the layering and reusability of a 
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system. Command, Observer, Mediator, and Chain of Responsibility address how you 
can decouple senders and receivers, but with different trade-offs. 

The Command pattern supports decoupling by using a Command object to define the 
binding between a sender and receiver: 

anlnvoker aCommand aReceiver 
(sender) (receiver) 

-^EXKUKO ActaO 1 

The Command object provides a simple interface for issuing the request (that is, the 
Execute operation). Defining the sender-receiver connection in a separate object lets 
the sender work with different receivers. It keeps the sender decoupled from the re
ceivers, making senders easy to reuse. Moreover, you can reuse the Command object 
to parameterize a receiver with different senders. The Command pattern nominally 
requires a subclass for each sender-receiver connection, although the pattern describes 
implementation techniques that avoid subclassing. 

The Observer pattern decouples senders (subjects) from receivers (observers) by defin
ing an interface for signaling changes in subjects. Observer defines a looser sender-
receiver binding than Command, since a subject may have multiple observers, and 
their number can vary at run-time. 

aSubject 
(sender) 

Update() 

anObserver 
(receiver) 

anObserver 
(receiver) 

anObserver 
(receiver) 

UpdateQ 

UpdateQ 

T T 
The Subject and Observer interfaces in the Observer pattern are designed for commu
nicating changes. Therefore the Observer pattern is best for decoupling objects when 
there are data dependencies between them. 

The Mediator pattern decouples objects by having them refer to each other indirectly 
through a Mediator object. 



348 BEHAVIORAL PATTERNS CHAPTER 5 

aColleague 
(sender/receiver) 

X 

aMediator 

l 

T 

aColleague 
(sender/receiver) 

aColleague 
(sender/receiver) 

T 
A Mediator object routes requests between Colleague objects and centralizes their com
munication. Consequently, colleagues can only talk to each other through the Mediator 
interface. Because this interface is fixed, the Mediator might have to implement its 
own dispatching scheme for added flexibility. Requests can be encoded and arguments 
packed in such a way that colleagues can request an open-ended set of operations. 

The Mediator pattern can reduce subclassing in a system, because it centralizes com
munication behavior in one class instead of distributing it among subclasses. However, 
ad hoc dispatching schemes often decrease type safety. 

Finally, the Chain of Responsibility pattern decouples the sender from the receiver by 
passing the request along a chain of potential receivers: 

aClient 
(sender) 

JL 

aHandler 
(receiver) 

HandleHelp() 

aHandler 
(receiver) 

aHandler 
(receiver) 

T 

HandleHelp() 

HandleHelp() 

T 

Since the interface between senders and receivers is fixed, Chain of Responsibility 
may also require a custom dispatching scheme. Hence it has the same type-safety 
drawbacks as Mediator. Chain of Responsibility is a good way to decouple the sender 
and the receiver if the chain is already part of the system's structure, and one of several 
objects may be in a position to handle the request. Moreover, the pattern offers added 
flexibility in that the chain can be changed or extended easily. 
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Summary 

With few exceptions, behavioral design patterns complement and reinforce each other. 
A dare "i a chainof responsibility for example, will probably include at least one ap
plication of Template Method (325). The template method can use primitive operations 
to determine whether the object should handle the request and to choose the object to 
forward to. The chain can use the Command pattern to represent requests as objects 
Interpreter (243) can use the State pattern to define parsing contexts. An iterator can 
traverse an aggregate, and a visitor can apply an operation to each of its elements. 

rrZlSW»k WeUW"h °ther Pattems< to°-For sample, * system that uses 
he Composite (163) pattern might use a vrsitor to perform operations on components of 

the composition. It could use Chain of Responsibility to let components access global 
properties through their parent. It could also use Decorator (175) to override these 
properties on parts of the composition. It could use the Observer pattern to tie one 
object structure to another and the State pattern to let a component change its behavior 
as its state changes. The composition itself might be created using the approach in 
Builder (97), and it might be treated as a Prototype (117) by some other part of the 

ed^°bjeCt;0rienteduSyStemS are just Iike this-they have multiple patterns 
embedded m them—but not because their designers thought in these terms. Comoo-
S °n at thePattern level rather than the class or object levels lets us achieve the same 
synergy with greater ease. me same 


