
NOTICE:

This scan is being provided as part of Oregon State University's effort to prevent
the spread of the COVID 19 virus. It is for your personal or instructional use only,
and is only intended for use during the time when University public health
measures prevent access to your personal copy or a copy on physical reserve at
the Library. Please discard this copy once you have access to your personal copy
or to the physical copy at the Library, and do not share it.

When available, we have included the copyright statement provided in the work
from which this copy was made.

If the work from which this copy was made did not include a formal copyright
notice, this work may still be protected by copyright law. Uses may be allowed
with permission from the rights-holder, or if the copyright on the work has
expired, or if the use is "fair use" or within another exemption. The user of this
work is responsible for determining lawful use.

Design Patterns
Elements of Reusable Object-Oriented Software

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

•
• •

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts Menlo Park, California New York

Don Mills. Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Alexander,copyright© 197/ oy
Oxford University Press, Inc.

rc and sellers to distinguish their products

The publisher offers discounts on this book wh

-"S2SS»""«
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 0180/

Erich Gamma. „ l« professional computing series)

Indudes bibliographical references and index.

ISBN 0-201-63361-2 niltftr science) 2. Computer
1. Object-oriented programming (Computer scienc)

software-Reusability. L Gamma. Ench. II. Ser.es.
QA76.64.D47 1994 94-34264
005.1'2-dc20 CIP

Copyright © 1995 by Addison-Wesley Publishing Company

All rights reserved. No part of this P»^cauonphotocopy-

LT^o"«^ without the prior consent of thepublisher. Printedindie
United States of America. Published simultaneously in Canada.

Cover art © 1994 M.C. Escher / Cordon Art - Baarn - Holland. All rights reserved.

This book was typeset by die authors in 10-poin, Palatum using IATEX, FrameMaker,

and idraw.

ISBN 0-201-63361-2

Text printed on recycled and acid-free paper.
34 5 67 89 10 11 CRW 98979695
Third printing, May 1995

Chapter 5

Behavioral Patterns

Behavioral patterns are concerned with algorithms and the assignment of responsibili
ties between objects. Behavioral patterns describe not just patterns of objects or classes
but also the patterns of communication between them. These patterns characterize
complex control flow that's difficult to follow at run-time. They shift your focus away
from flow of control to let you concentrate just on the way objects are interconnected.

Behavioral class patterns use inheritance to distribute behavior between classes. This
chapter includes two such patterns. Template Method (325) is the simpler and more
common of the two. A template method is an abstract definition of an algorithm. It
defines the algorithm step by step. Each step invokes either an abstract operation or
a primitive operation. A subclass fleshes out the algorithm by defining the abstract
operations. The other behavioral class pattern is Interpreter (243), which represents
a grammar as a class hierarchy and implements an interpreter as an operation on
instances of these classes.

Behavioral object patterns use object composition rather than inheritance. Some de
scribe how a group of peer objects cooperate to perform a task that no single object
can carry out by itself. An important issue here is how peer objects know about each
other. Peers could maintain explicit references to each other, but that would increase
their coupling. In the extreme, every object would know about every other. The Me
diator (273) pattern avoids this by introducing a mediator object between peers. The
mediator provides the indirection needed for loose coupling.

Chain of Responsibility (223) provides even looser coupling. It lets you send requests to
an object implicitly through a chain of candidate objects. Any candidate may fulfill the
request depending on run-time conditions. The number of candidates is open-ended,
and you can select which candidates participate in the chain at run-time.

The Observer (293) pattern defines and maintains a dependency between objects. The
classic example of Observer is in Smalltalk Model/View/Controller, where all views
of the model are notified whenever the model's state changes.

221

222 BEHAVIORAL PATTERNS CHAPTER 5

Other behavioral object patterns are concerned with encapsulating behavior in an object
and delegating requests to it. The Strategy (315) pattern encapsulates an algorithm in
an object. Strategy makes it easy to specify and change the algorithm an object uses.
The Command (233) pattern encapsulates a request in an object so that it can be passed
as a parameter, stored on a history list, or manipulated in other ways. The State (305)
pattern encapsulates the states of an object so that the object can change its behavior
when its state object changes. Visitor (331) encapsulates behavior that would otherwise
be distributed across classes, and Iterator (257) abstracts the way you access and traverse
objects in an aggregate.

CHAIN OF RESPONSIBILITY 223

Chain of Responsibility object Behavioral

Intent
Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Motivation
Consider a context-sensitive help facility for a graphical user interface. The user
can obtain help information on any part of the interface just by clicking on it.
The help that's provided depends on the part of the interface that's selected and
its context; for example, a button widget in a dialog box might have different
help information than a similar button in the main window. If no specific help
information exists for that part of the interface, then the help system should
display a more general help message about the immediate context—the dialog
box as a whole, for example.

Hence it's natural to organize help information according to its generality—from
the most specific to the most general. Furthermore, it's clear that a help request
is handled by one of several user interface objects; which one depends on the
context and how specific the available help is.

The problem here is that the object that ultimately provides the help isn't known
explicitly to the object (e.g., the button) that initiates the help request. What we
need is a way to decouple the button that initiates the help request from the objects
that might provide help information. The Chain of Responsibility pattern defines
how that happens.

The idea of this pattern is to decouple senders and receivers by giving multiple
objects a chance to handle a request. The request gets passed along a chain of
objects until one of them handles it.

aSaveDialog

specific general

224 BEHAVIORAL PATTERNS CHAPTER 5

The first object in the chain receives the request and either handles it or forwards
it to the next candidate on the chain, which does likewise. The object that made
the request has no explicit knowledge of who will handle it—we say the request
has an implicit receiver.

Let's assume the user clicks for help on a button widget marked "Print." The
button is contained in an instance of PrintDialog, which knows the application
object it belongs to (see preceding object diagram). The following interaction
diagram illustrates how the help request gets forwarded along the chain:

aPrintButton

X
aPrintDialog anApplication

HandleHelp()

HandleHelpQ

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at
anApplication, which can handle it or ignore it. The client that issued the request
has no direct reference to the object that ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remain implicit,
each object on the chain shares a common interface for handling requests and for
accessing its successor on the chain. For example, the help system might define
a HelpHandler class with a corresponding HandleHelp operation. HelpHandler
can be the parent class for candidate object classes, or it can be defined as a mixin
class. Then classes that want to handle help requests can make HelpHandler a
parent:

CHAIN OF RESPONSIBILITY 225

The Button, Dialog, and Application classes use HelpHandler operations to handle
help requests. HelpHandler's HandleHelp operation forwards the request to the
successor by default. Subclasses can override this operation to provide help under
the right circumstances; otherwise they can use the default implementation to
forward the request.

Applicability
Use Chain of Responsibility when

• more than one object may handle a request, and the handler isn't known a
priori. The handler should be ascertained automatically.

• you want to issue a request to one of several objects without specifying the
receiver explicitly.

• the set of objects that can handle a request should be specified dynamically.

Structure

successor
Client Handler

successor
Client Handler

HandleRequestf)

A
ConcreteHandlerl ConcreteHandler2

HandleRequestQ HandleRequestQ

A typical object structure might look like this:

Participants
• Handler (HelpHandler)

- defines an interface for handling requests.

- (optional) implements the successor link.

226 BEHAVIORAL PATTERNS CHAPTER 5

• ConcreteHandler (PrintButton, PrintDialog)

- handles requests it is responsible for.

- can access its successor.

- if the ConcreteHandler can handle the request, it does so; otherwise it
forwards the request to its successor.

• Client

- initiates the request to a ConcreteHandler object on the chain.

Collaborations
• When a client issues a request, the request propagates along the chain until a

ConcreteHandler object takes responsibility for handling it.

Consequences
Chain of Responsibility has the following benefits and liabilities:

1. Reduced coupling. The pattern frees an object from knowing which other
object handles a request. An object only has to know that a request will be
handled "appropriately." Both the receiver and the sender have no explicit
knowledge of each other, and an object in the chain doesn't have to know
about the chain's structure.
As a result, Chain of Responsibility can simplify object interconnections.
Instead of objects maintaining references to all candidate receivers, they
keep a single reference to their successor.

2. Added flexibility in assigning responsibilities to objects. Chain of Responsibility
gives you added flexibility in distributing responsibilities among objects.
You can add or change responsibilities for handling a request by adding
to or otherwise changing the chain at run-time. You can combine this with
subclassing to specialize handlers statically.

3. Receipt isn't guaranteed. Since a request has no explicit receiver, there's no
guarantee it'll be handled—the request can fall off the end of the chain without
ever being handled. A request can also go unhandled when the chain is not
configured properly.

Implementation
Here are implementation issues to consider in Chain of Responsibility:

1. Implementing the successor chain. There are two possible ways to implement
the successor chain:

(a) Define new links (usually in the Handler, but ConcreteHandlers could
define them instead).

CHAIN OF RESPONSIBILITY 227

(b) Use existing links.

Our examples so far define new links, but often you can use existing object
references to form the successor chain. For example, parent references in a
part-whole hierarchy can define a part's successor. A widget structure might
already have such links. Composite (163) discusses parent references in more
detail.
Using existing links works well when the links support the chain you need.
It saves you from defining links explicitly, and it saves space. But if the
structure doesn't reflect the chain of responsibility your application requires,
then you'll have to define redundant links.

2. Connecting successors. If there are no preexisting references for defining a
chain, then you'll have to introduce them yourself. In that case, the Handler
not only defines the interface for the requests but usually maintains the
successor as well. That lets the handler provide a default implementation
of HandleRequest that forwards the request to the successor (if any). If a
concrete handler subclass isn't interested in the request, it doesn't have to
override the forwarding operation, since its default implementation forwards
unconditionally.
Here's a HelpHandler base class that maintains a successor link:

class HelpHandler {
public:

HelpHandler(HelpHandler* s) : .successor(s) { }
virtual void HandleHelp();

private:
HelpHandler* .successor;

} ;

void HelpHandler::HandleHelp () {
if (.successor) {

_successor->HandleHelp();
}

}

3. Representing requests. Different options are available for representing requests.
In the simplest form, the request is a hard-coded operation invocation, as in
the case of HandleHelp. This is convenient and safe, but you can forward
only the fixed set of requests that the Handler class defines.
An alternative is to use a single handler function that takes a request code
(e.g., an integer constant or a string) as parameter. This supports an open-
ended set of requests. The only requirement is that the sender and receiver
agree on how the request should be encoded.
This approach is more flexible, but it requires conditional statements for
dispatching the request based on their code. Moreover, there's no type-safe
way to pass parameters, so they must be packed and unpacked manually.
Obviously this is less safe than invoking an operation directly.

BEHAVIORAL PATTERNS CHAPTER 5

To address the parameter-passing problem, we can use separate request
objects that bundle request parameters. A Request class can represent re
quests explicitly, and new kinds of requests can be defined by subclassing.
Subclasses can define different parameters. Handlers must know the kind
of request (that is, which Request subclass they're using) to access these
parameters.

To identify the request, Reques t can define an accessor function that returns
an identifier for the class. Alternatively, the receiver can use run-time type
information if the implementation languages supports it.

Here is a sketch of a dispatch function that uses request objects to identify
requests. A GetKind operation defined in the base Request class identifies
the kind of request:

void Handler::HandleRequest (Request* theRequest) {
switch (theRequest->GetKind()) {
case Help:

// cast argument to appropriate type
HandleHelp((HelpRequest*) theRequest);
break;

case Print:

HandlePrint((PrintRequest*) theRequest);
I I . . .
break;

default:
I I . . .
break;

}
}

Subclasses can extend the dispatch by overriding HandleRequest. The
subclass handles only the requests in which it's interested; other requests
are forwarded to the parent class. In this way, subclasses effectively ex
tend (rather than override) the HandleRequest operation. For example,
here's how an ExtendedHandler subclass extends MyHandler's version
of HandleRequest:

class ExtendedHandler : public Handler {
public:

virtual void HandleRequest(Request* theRequest);
// ...

} ;

void ExtendedHandler::HandleRequest (Request* theRequest) {
switch (theRequest->GetKind()) {
case Preview:

// handle the Preview request
break;

CHAIN OF RESPONSIBILITY 229

default:
// let Handler handle other requests
Handler::HandleRequest(theRequest);

}
}

4. Automatic forwarding in Smalltalk. You can use the doesNotUnderstand
mechanism in Smalltalk to forward requests. Messages that have
no corresponding methods are trapped in the implementation of
doesNotUnderstand, which can be overridden to forward the message
to an object's successor. Thus it isn't necessary to implement forwarding
manually; the class handles only the request in which it's interested, and it
relies on doesNotUnderstand to forward all others.

Sample Code
The following example illustrates how a chain of responsibility can handle re
quests for an on-line help system like the one described earlier. The help request
is an explicit operation. We'll use existing parent references in the widget hier
archy to propagate requests between widgets in the chain, and we'll define a
reference in the Handler class to propagate help requests between nonwidgets in
the chain.

The HelpHandler class defines the interface for handling help requests. It main
tains a help topic (which is empty by default) and keeps a reference to its successor
on the chain of help handlers. The key operation is Handl eHe lp, which subclasses
override. HasHelp is a convenience operation for checking whether there is an
associated help topic.

typedef int Topic;
const Topic NO_HELP_TOPIC = -1;

class HelpHandler {
public:

HelpHandler(HelpHandler* = 0, Topic = NO_HELP_TOPIC);
virtual bool HasHelpO;
virtual void SetHandler(HelpHandler*, Topic);
virtual void HandleHelp();

private:
HelpHandler* _successor;
Topic _topic;

} ;

HelpHandler::HelpHandler (
HelpHandler* h, Topic t

) : .successor(h), _topic(t) { }

bool HelpHandler::HasHelp () {
return _topic != NO_HELP_TOPIC;

)

230 BEHAVIORAL PATTERNS CHAPTER 5

void HelpHandler::HandleHelp () {
if (.successor != 0) {

.successor->HandleHelp();
}

}

All widgets are subclasses of the Widget abstract class. Widget is a subclass of
HelpHandler, since all user interface elements can have help associated with
them. (We could have used a mixin-based implementation just as well.)

class Widget : public HelpHandler {
protected:

Widget(Widget* parent, Topic t = NO.HELP.TOPIC);
private:

Widget* .parent;
> ;

Widget::Widget (Widget* w, Topic t) : HelpHandler(w, t) {
.parent = w;

}

In our example, a button is the first handler on the chain. The Button class is a
subclass of Widget. The Button constructor takes two parameters: a reference
to its enclosing widget and the help topic.

class Button : public Widget {
public:

Button(Widget* d, Topic t = NO.HELP.TOPIC);

virtual void HandleHelp();
// Widget operations that Button overrides...

} ;

Button s version of HandleHelp first tests to see if there is a help topic for
buttons. If the developer hasn't defined one, then the request gets forwarded to
the successor using the HandleHelp operation in HelpHandler. If there is a
help topic, then the button displays it, and the search ends.

Button::Button (Widget* h, Topic t) : Widget(h, t) { }

void Button::HandleHelp () {
if (HasHelpO) {

// offer help on the button
} else {

HelpHandler::HandleHelp();
}

}

Dialog implements a similar scheme, except that its successor is not a widget
but any help handler. In our application this successor will be an instance of
Application.

CHAIN OF RESPONSIBILITY 231

class Dialog : public Widget {
public:

Dialog(HelpHandler* h, Topic t = NO_HELP_TOPIC);
virtual void HandleHelp();

// Widget operations that Dialog overrides...
// ...

} ;

Dialog::Dialog (HelpHandler* h, Topic t) : Widget(0) {
SetHandler(h, t);

}

void Dialog::HandleHelp () {
if (HasHelp()) {

// offer help on the dialog
} else {

HelpHandler::HandleHelp();
}

}

At the end of the chain is an instance of Application. The application is not
a widget, so Application is subclassed directly from HelpHandler. When a
help request propagates to this level, the application can supply information on
the application in general, or it can offer a list of different help topics:

class Application : public HelpHandler {
public:

Application(Topic t) : HelpHandler(0, t) { }

virtual void HandleHelp();
// application-specific operations...

};

void Application::HandleHelp () {
// show a list of help topics

}

The following code creates and connects these objects. Here the dialog concerns
printing, and so the objects have printing-related topics assigned.

const Topic PRINT_TOPIC = 1;
const Topic PAPER_ORIENTATION_TOPIC = 2;
const Topic APPLICATION_TOPIC = 3;

Application* application = new Application(APPLICATION_TOPIC);
Dialog* dialog = new Dialog(application, PRINT_TOPIC);
Button* button = new Button(dialog, PAPER_ORIENTATION_TOPIC);

We can invoke the help request by calling Handl eHe lp on any object on the chain.
To start the search at the button object, just call HandleHelp on it:

232 BEHAVIORAL PATTERNS CHAPTER 5

button->HandleHelp();

In this case, the button will handle the request immediately. Note that any
HelpHandler class could be made the successor of Dialog. Moreover, its suc
cessor could be changed dynamically. So no matter where a dialog is used, you'll
get the proper context-dependent help information for it.

Known Uses
Several class libraries use the Chain of Responsibility pattern to handle user
events. They use different names for the Handler class, but the idea is the same:
When the user clicks the mouse or presses a key, an event gets generated and
passed along the chain. MacApp [App89] and ET++ [WGM88] call it "Event-
Handler," Symantec's TCL library [Sym93b] calls it "Bureaucrat," and NeXT's
AppKit [Add94] uses the name "Responder."

The Unidraw framework for graphical editors defines Command objects that
encapsulate requests to Component and ComponentView objects [VL90]. Com
mands are requests in the sense that a component or component view may in
terpret a command to perform an operation. This corresponds to the "requests
as objects" approach described in Implementation. Components and component
views may be structured hierarchically. A component or a component view may
forward command interpretation to its parent, which may in turn forward it to its
parent, and so on, thereby forming a chain of responsibility.

ET++ uses Chain of Responsibility to handle graphical update. A graphical object
calls the InvalidateRect operation whenever it must update a part of its appear
ance. A graphical object can't handle InvalidateRect by itself, because it doesn't
know enough about its context. For example, a graphical object can be enclosed
in objects like Scrollers or Zoomers that transform its coordinate system. That
means the object might be scrolled or zoomed so that it's partially out of view.
Therefore the default implementation of InvalidateRect forwards the request to
the enclosing container object. The last object in the forwarding chain is a Window
instance. By the time Window receives the request, the invalidation rectangle is
guaranteed to be transformed properly. The Window handles InvalidateRect by
notifying the window system interface and requesting an update.

Related Patterns
Chain of Responsibility is often applied in conjunction with Composite (163).
There, a component's parent can act as its successor.

COMMAND 233

COMMAND Object Behavioral

Intent
Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

Also Known As A
Action, Transaction V

Motivation
Sometimes it's necessary to issue requests to objects without knowing anything
about the operation being requested or the receiver of the request. For example,
user interface toolkits include objects like buttons and menus that carry out a
request in response to user input. But the toolkit can't implement the request
explicitly in the button or menu, because only applications that use the toolkit
know what should be done on which object. As toolkit designers we have no way
of knowing the receiver of the request or the operations that will carry it out.

The Command pattern lets toolkit objects make requests of unspecified applica
tion objects by turning the request itself into an object. This object can be stored
and passed around like other objects. The key to this pattern is an abstract Com
mand class, which declares an interface for executing operations. In the simplest
form this interface includes an abstract Execute operation. Concrete Command
subclasses specify a receiver-action pair by storing the receiver as an instance
variable and by implementing Execute to invoke the request. The receiver has the
knowledge required to carry out the request.

Application

Add(Document)

Menu

Add(Menultem)

Document

Open()
Close()
Cut()
Copy()
Paste()

Menultem Menultem

Clicked() 9

O
command

Command

ExecuteQ

command->Execute()
I

</"

p/O-f t

1 k&o

Menus can be implemented easily with Command objects. Each choice in a Menu
is an instance of a Menultem class. An Application class creates these menus and

BEHAVIORAL PATTERNS CHAPTER 5

their menu items along with the rest of the user interface. The Application class
also keeps track of Document objects that a user has opened.

The application configures each Menultem with an instance of a concrete Com
mand subclass. When the user selects a Menultem, the Menultem calls Execute
on its command, and Execute carries out the operation. Menultems don't know
which subclass of Command they use. Command subclasses store the receiver of
the request and invoke one or more operations on the receiver.

For example, PasteCommand supports pasting text from the clipboard into a
Document. PasteCommand's receiver is the Document object it is supplied upon
instantiation. The Execute operation invokes Paste on the receiving Document.

OpenCommand's Execute operation is different: it prompts the user for a docu
ment name, creates a corresponding Document object, adds the document to the
receiving application, and opens the document.

Sometimes a Menultem needs to execute a sequence of commands. For example, a
Menultem for centering a page at normal size could be constructed from a Cen-
terDocumentCommand object and a NormalSizeCommand object. Because it's
common to string commands together in this way, we can define a MacroCom-
mand class to allow a Menultem to execute an open-ended number of commands.

COMMAND 235

MacroCommand is a concrete Command subclass that simply executes a sequence
of Commands. MacroCommand has no explicit receiver, because the commands
it sequences define their own receiver.

In each of these examples, notice how the Command pattern decouples the object
that invokes the operation from the one having the knowledge to perform it. This
gives us a lot of flexibility in designing our user interface. An application can
provide both a menu and a push button interface to a feature just by making
the menu and the push button share an instance the same concrete Command
subclass. We can replace commands dynamically, which would be useful for
implementing context-sensitive menus. We can also support command scripting
by composing commands into larger ones. All of this is possible because the object
that issues a request only needs to know how to issue it; it doesn't need to know
how the request will be carried out.

Applicability
Use the Command pattern when you want to

• parameterize objects by an action to perform, as Menultem objects did above.
You can express such parameterization in a procedural language with a
callback function, that is, a function that's registered somewhere to be called
at a later point. Commands are an object-oriented replacement for callbacks.

• specify, queue, and execute requests at different times. A Command object
can have a lifetime independent of the original request. If the receiver of a
request can be represented in an address space-independent way, then you
can transfer a command object for the request to a different process and fulfill
the request there.

• support undo. The Command's Execute operation can store state for revers
ing its effects in the command itself. The Command interface must have an
added Unexecute operation that reverses the effects of a previous call to Ex-

238 BEHAVIORAL PATTERNS CHAPTER 5

Implementation
Consider the following issues when implementing the Command pattern:

1. How intelligent should a command be? A command can have a wide range of
abilities. At one extreme it merely defines a binding between a receiver and
the actions that carry out the request. At the other extreme it implements
everything itself without delegating to a receiver at all. The latter extreme is
useful when you want to define commands that are independent of existing
classes, when no suitable receiver exists, or when a command knows its
receiver implicitly. For example, a command that creates another application
window may be just as capable of creating the window as any other object.
Somewhere in between these extremes are commands that have enough
knowledge to find their receiver dynamically.

2. Supporting undo and redo. Commands can support undo and redo capabilities
if they provide a way to reverse their execution (e.g., an Unexecute or Undo
operation). A ConcreteCommand class might need to store additional state
to do so. This state can include

• the Receiver object, which actually carries out operations in response to
the request,

• the arguments to the operation performed on the receiver, and

• any original values in the receiver that can change as a result of handling
the request. The receiver must provide operations that let the command
return the receiver to its prior state.

To support one level of undo, an application needs to store only the com
mand that was executed last. For multiple-level undo and redo, the applica
tion needs a history list of commands that have been executed, where the
maximum length of the list determines the number of undo/redo levels. The
history list stores sequences of commands that have been executed. Travers
ing backward through the list and reverse-executing commands cancels their
effect; traversing forward and executing commands reexecutes them.
An undoable command might have to be copied before it can be placed
on the history list. That's because the command object that carried out the
original request, say, from a Menultem, will perform other requests at later
times. Copying is required to distinguish different invocations of the same
command if its state can vary across invocations.
For example, a DeleteCommand that deletes selected objects must store dif
ferent sets of objects each time it's executed. Therefore the DeleteCommand
object must be copied following execution, and the copy is placed on the his
tory list. If the command's state never changes on execution, then copying is
not required—only a reference to the command need be placed on the history
ist. Commands that must be copied before being placed on the history list

act as prototypes (see Prototype (117)).

COMMAND 239

3. Avoiding error accumulation in the undo process. Hysteresis can be a problem in
ensuring a reliable, semantics-preserving undo/redo mechanism. Errors can
accumulate as commands are executed, unexecuted, and reexecuted repeat
edly so that an application's state eventually diverges from original values.
It may be necessary therefore to store more information in the command to
ensure that objects are restored to their original state. The Memento (283) pat
tern can be applied to give the command access to this information without
exposing the internals of other objects.

4. Using C++ templates. For commands that (1) aren't undoable and (2) don't
require arguments, we can use C++ templates to avoid creating a Command
subclass for every kind of action and receiver. We show how to do this in the
Sample Code section.

Sample Code
The C++ code shown here sketches the implementation of the Command classes
in the Motivation section. We'll define OpenCommand, PasteCommand, and
MacroCommand. First the abstract Command class:

class Command {
public:

virtual "Command!);

virtual void Execute!) = 0;
protected:

Command();
) ;

OpenCommand opens a document whose name is supplied by the user. An
OpenCommand must be passed an Application object in its constructor.
AskUser is an implementation routine that prompts the user for the name of
the document to open.

class OpenCommand : public Command {
public:

OpenCommand(Application*);

virtual void Execute!);
protected:

virtual const char* AskUser!);
private:

Application* .application;
char* .response;

} ;

OpenCommand::OpenCommand (Application* a) {
.application = a;

}

BEHAVIORAL PATTERNS CHAPTER 5

void OpenCommand::Execute () {
const char* name = AskUserO;

if (name != 0) {
Document* document = new Document(name);
_application->Add(document);
document->Open();

}
}

A PasteCommand must be passed a Document object as its receiver. The receiver
is given as a parameter to PasteCommand's constructor.

class PasteCommand : public Command {
public:

PasteCommand(Document*);

virtual void Execute();
private:

Document* _document;
} ;

PasteCommand::PasteCommand (Document* doc) {
_document = doc;

)

void PasteCommand::Execute () {
_document->Paste() ;

}

For simple commands that aren't undoable and don't require arguments, we
can use a class template to parameterize the command's receiver. We'll define
a template subclass SimpleCommand for such commands. SimpleCommand is
parameterized by the Receiver type and maintains a binding between a receiver
object and an action stored as a pointer to a member function.

template cclass Receiver>
class SimpleCommand : public Command {
public:

typedef void (Receiver::* Action)();

SimpleCommand(Receiver* r, Action a) :
.receiver(r), _action(a) {)

virtual void Execute();
private:

Action _action;
Receiver* _receiver;

} ;

The constructor stores the receiver and the action in the corresponding instance
variables. Execute simply applies the action to the receiver.

COMMAND 241

template <class Receiver>
void SimpleCommand<Receiver>::Execute () {

(_receiver->*_action)();
}

To create a command that calls Action on an instance of class MyClass, a client
simply writes

MyClass* receiver = new MyClass;
// ...
Command* aCommand =

new SimpleCommand<MyClass>(receiver, &MyClass::Action);

// ...
aCommand->Execute();

Keep in mind that this solution only works for simple commands. More complex
commands that keep track of not only their receivers but also arguments and/or
undo state require a Command subclass.

A MacroCommand manages a sequence of subcommands and provides operations
for adding and removing subcommands. No explicit receiver is required, because
the subcommands already define their receiver.

class MacroCommand : public Command {
public:

MacroCommand () ;
virtual "MacroCommand();

virtual void Add(Command*);
virtual void Remove(Command*);

virtual void Execute();
private:

List<Command*>* _cmds;
} ;

The key to the MacroCommand is its Execute member function. This traverses
all the subcommands and performs Execute on each of them.

void MacroCommand::Execute () {
ListIterator<Command*> i(_cmds);

for (i. First (); li.IsDoneO; i.NextO) {
Command* c = i.Currentltem();
c->Execute();

)

>

Note that should the MacroCommand implement an Unexecute operation, then
its subcommands must be unexecuted in reverse order relative to Execute's im
plementation.

Finally, MacroCommand must provide operations to manage its subcommands.
The MacroCommand is also responsible for deleting its subcommands.

242 BEHAVIORAL PATTERNS CHAPTER 5

void MacroCommand::Add (Command* c) {
_cmds->Append(c)

}

void MacroCommand::Remove (Command* c) {
_cmds->Remove(c);

}

Known Uses
Perhaps the first example of the Command pattern appears in a paper by
Lieberman [Lie85]. MacApp [App89] popularized the notion of commands for
implementing undoable operations. ET++ [WGM88], Interviews [LCI+92], and
Unidraw [VL90] also define classes that follow the Command pattern. Interviews
defines an Action abstract class that provides command functionality. It also de
fines an ActionCallback template, parameterized by action method, that can in
stantiate command subclasses automatically.

The THINK class library [Sym93b] also uses commands to support undoable
actions. Commands in THINK are called "Tasks." Task objects are passed along a
Chain of Responsibility (223) for consumption.

Unidraw's command objects are unique in that they can behave like messages. A
Unidraw command may be sent to another object for interpretation, and the result
of the interpration varies with the receiving object. Moreover, the receiver may
delegate the interpretation to another object, typically the receiver's parent in a
larger structure as in a Chain of Responsibility. The receiver of a Unidraw com
mand is thus computed rather than stored. Unidraw's interpretation mechanism
depends on run-time type information.

Coplien describes how to implement functors, objects that are functions, in
C++ [Cop92]. He achieves a degree of transparency in their use by overload
ing the function call operator (operator ()). The Command pattern is different;
its focus is on maintaining a binding between a receiver and a function (i.e., action),
not just maintaining a function.

Related Patterns
A Composite (163) can be used to implement MacroCommands.

A Memento (283) can keep state the command requires to undo its effect.

A command that must be copied before being placed on the history list acts as a
Prototype (117).

INTERPRETER 243

INTERPRETER Class Behavioral

Intent
Given a language, define a represention for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.

Motivation
If a particular kind of problem occurs often enough, then it might be worthwhile
to express instances of the problem as sentences in a simple language. Then you
can build an interpreter that solves the problem by interpreting these sentences.

For example, searching for strings that match a pattern is a common problem.
Regular expressions are a standard language for specifying patterns of strings.
Rather than building custom algorithms to match each pattern against strings,
search algorithms could interpret a regular expression that specifies a set of strings
to match.

The Interpreter pattern describes how to define a grammar for simple languages,
represent sentences in the language, and interpret these sentences. In this example,
the pattern describes how to define a grammar for regular expressions, represent
a particular regular expression, and how to interpret that regular expression.

Suppose the following grammar defines the regular expressions:

expression ::= literal | alternation | sequence | repetition |
'(' expression ')'

alternation ::= expression '|' expression
sequence ::= expression expression
repetition ::= expression
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

The symbol expression is the start symbol, and literal is a terminal symbol
defining simple words.

The Interpreter pattern uses a class to represent each grammar rule. Symbols on
the right-hand side of the rule are instance variables of these classes. The grammar
above is represented by five classes: an abstract class RegularExpression and its
four subclasses LiteralExpression, AlternationExpression, SequenceExpression,
and RepetitionExpression. The last three classes define variables that hold subex
pressions.

244 BEHAVIORAL PATTERNS CHAPTER 5

Every regular expression defined by this grammar is represented by an abstract
syntax tree made up of instances of these classes. For example, the abstract syntax
tree

/ N
aSequenceExpresslon

expression 1
expression2

aLiteralExpression

'raining'

represents the regular expression

raining & (dogs | cats) *

We can create an interpreter for these regular expressions by defining the Interpret
operation on each subclass of RegularExpression. Interpret takes as an argument
the context in which to interpret the expression. The context contains the input
string and information on how much of it has been matched so far. Each subclass
of RegularExpression implements Interpret to match the next part of the input
string based on the current context. For example,

INTERPRETER 245

• LiteralExpression will check if the input matches the literal it defines,

• AlternationExpression will check if the input matches any of its alternatives,

• RepetitionExpression will check if the input has multiple copies of expression
it repeats,

and so on.

Applicability
Use the Interpreter pattern when there is a language to interpret, and you can
represent statements in the language as abstract syntax trees. The Interpreter
pattern works best when

• the grammar is simple. For complex grammars, the class hierarchy for the
grammar becomes large and unmanageable. Tools such as parser generators
are a better alternative in such cases. They can interpret expressions without
building abstract syntax trees, which can save space and possibly time.

• efficiency is not a critical concern. The most efficient interpreters are usually
not implemented by interpreting parse trees directly but by first translating
them into another form. For example, regular expressions are often trans
formed into state machines. But even then, the translator can be implemented
by the Interpreter pattern, so the pattern is still applicable.

Structure

Participants
• AbstractExpression (RegularExpression)

- declares an abstract Interpret operation that is common to all nodes in the
abstract syntax tree.

246 BEHAVIORAL PATTERNS CHAPTER 5

• TerminalExpression (LiteralExpression)

- implements an Interpret operation associated with terminal symbols in the
grammar.

- an instance is required for every terminal symbol in a sentence.

• NonterminalExpression (AlternationExpression, RepetitionExpression, Se-
quenceExpressions)

- one such class is required for every rule R Ri R2 ... Rn in the grammar.

- maintains instance variables of type AbstractExpression for each of the
symbols Rx through #n.

- implements an Interpret operation for nonterminal symbols in the gram
mar. Interpret typically calls itself recursively on the variables representing
Ri through Rn.

• Context

- contains information that's global to the interpreter.

• Client

- builds (or is given) an abstract syntax tree representing a particular sen
tence in the language that the grammar defines. The abstract syntax tree is
assembled from instances of the NonterminalExpression and TerminalEx
pression classes.

- invokes the Interpret operation.

Collaborations
• The client builds (or is given) the sentence as an abstract syntax tree of Nonter

minalExpression and TerminalExpression instances. Then the client initializes
the context and invokes the Interpret operation.

• Each NonterminalExpression node defines Interpret in terms of Interpret on
each subexpression. The Interpret operation of each TerminalExpression de
fines the base case in the recursion.

• The Interpret operations at each node use the context to store and access the
state of the interpreter.

Consequences
The Interpreter pattern has the following benefits and liabilities:

1. It's easy to change and extend the grammar. Because the pattern uses classes
to represent grammar rules, you can use inheritance to change or extend
the grammar. Existing expressions can be modified incrementally, and new
expressions can be defined as variations on old ones.

INTERPRETER 247

2. Implementing the grammar is easy, too. Classes defining nodes in the abstract
syntax tree have similar implementations. These classes are easy to write, and
often their generation can be automated with a compiler or parser generator.

3. Complex grammars are hard to maintain. The Interpreter pattern defines at least
one class for every rule in the grammar (grammar rules defined using BNF
may require multiple classes). Hence grammars containing many rules can
be hard to manage and maintain. Other design patterns can be applied to
mitigate the problem (see Implementation). But when the grammar is very
complex, other techniques such as parser or compiler generators are more
appropriate.

4. Adding new ways to interpret expressions. The Interpreter pattern makes it
easier to evaluate an expression in a new way. For example, you can support
pretty printing or type-checking an expression by defining a new operation
on the expression classes. If you keep creating new ways of interpreting an
expression, then consider using the Visitor (331) pattern to avoid changing
the grammar classes.

Implementation
The Interpreter and Composite (163) patterns share many implementation issues.
The following issues are specific to Interpreter:

1. Creating the abstract syntax tree. The Interpreter pattern doesn't explain how to
create an abstract syntax tree. In other words, it doesn't address parsing. The
abstract syntax tree can be created by a table-driven parser, by a hand-crafted
(usually recursive descent) parser, or directly by the client.

2. Defining the Interpret operation. You don't have to define the Interpret oper
ation in the expression classes. If it's common to create a new interpreter,
then it's better to use the Visitor (331) pattern to put Interpret in a separate
"visitor" object. For example, a grammar for a programming language will
have many operations on abstract syntax trees, such as as type-checking, op
timization, code generation, and so on. It will be more likely to use a visitor
to avoid defining these operations on every grammar class.

3. Sharing terminal symbols with the Flyweight pattern. Grammars whose sentences
contain many occurrences of a terminal symbol might benefit from sharing
a single copy of that symbol. Grammars for computer programs are good
examples—each program variable will appear in many places throughout the
code. In the Motivation example, a sentence can have the terminal symbol
dog (modeled by the LiteralExpression class) appearing many times.
Terminal nodes generally don't store information about their position in the
abstract syntax tree. Parent nodes pass them whatever context they need
during interpretation. Hence there is a distinction between shared (intrinsic)
state and passed-in (extrinsic) state, and the Flyweight (195) pattern applies.

248 BEHAVIORAL PATTERNS CHAPTER 5

For example, each instance of LiteralExpression for dog receives a context
containing the substring matched so far. And every such LiteralExpression
does the same thing in its Interpret operation—it checks whether the next
part of the input contains a dog—no matter where the instance appears in
the tree.

Sample Code
Here are two examples. The first is a complete example in Smalltalk for checking
whether a sequence matches a regular expression. The second is a C++ program
for evaluating Boolean expressions.

The regular expression matcher tests whether a string is in the language defined
by the regular expression. The regular expression is defined by the following
grammar:

expression ::= literal | alternation | sequence | repetition |
'(' expression ')'

alternation ::= expression '|' expression
sequence ::= expression '&' expression
repetition ::= expression 'repeat'
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

This grammar is a slight modification of the Motivation example. We changed
the concrete syntax of regular expressions a little, because symbol can't be
a postfix operation in Smalltalk. So we use repeat instead. For example, the
regular expression

(('dog ' | 'cat ') repeat & 'weather')

matches the input string "dog dog cat weather".

To implement the matcher, we define the five classes described on
page 243. The class SequenceExpression has instance variables expres-
sionl and expression2 for its children in the abstract syntax tree.
AlternationExpression stores its alternatives in the instance variables
alternativel and alternative2, whileRepetitionExpressionholds the
expression it repeats in its repetition instance variable. LiteralExpression has
a components instance variable that holds a list of objects (probably characters).
These represent the literal string that must match the input sequence.

The match: operation implements an interpreter for the regular expression.
Each of the classes defining the abstract syntax tree implements this operation. It
takes inputState as an argument representing the current state of the matching
process, having read part of the input string.

This current state is characterized by a set of input streams representing the set
of inputs that the regular expression could have accepted so far. (This is roughly
equivalent to recording all states that the equivalent finite state automata would
be in, having recognized the input stream to this point).

INTERPRETER 249

The current state is most important to the repeat operation. For example, if the
regular expression were

'a' repeat

then the interpreter could match "a", "aa", "aaa", and so on. If it were

'a' repeat & 'be'

then it could match "abc", "aabc", "aaabc", and so on. But if the regular ex
pression were

'a' repeat & 'abc'

then matching the input "aabc" against the subexpression "' a' repeat" would
yield two input streams, one having matched one character of the input, and the
other having matched two characters. Only the stream that has accepted one
character will match the remaining "abc".

Now we consider the definitions of match: for each class defining the regu
lar expression. The definition for SequenceExpression matches each of its
subexpressions in sequence. Usually it will eliminate input streams from its
inputState.

match: inputState
* expression2 match: (expressionl match: inputState) .

An AlternationExpression will return a state that consists of the
union of states from either alternative. The definition of match: for
AlternationExpression is

match: inputState
I finalState I
finalState := alternativel match: inputState.
finalState addAll: (alternative2 match: inputState).
finalState

The match: operation for Repet it ionExpression tries to find as many states
that could match as possible:

match: inputState
I aState finalState I
aState := inputState.
finalState := inputState copy.
[aState isEmpty]

whileFalse:
[aState := repetition match: aState.
finalState addAll: aState].

finalState

250 BEHAVIORAL PATTERNS CHAPTER 5

Its output state usually contains more states than its input state, because
a RepetitionExpression can match one, two, or many occurrences of
repetition on the input state. The output states represent all these possibil
ities, allowing subsequent elements of the regular expression to decide which
state is the correct one.

Finally, the definition of match: for LiteralExpression tries to match its
components against each possible input stream. It keeps only those input streams
that have a match:

match: inputState
| finalState tStream |
finalState := Set new.
inputState

do:
[:stream | tStream := stream copy.

(tStream nextAvailable:
components size

) = components
ifTrue: [finalState add: tStream]

] •
finalState

The nextAvailable: message advances the input stream. This is the only
match: operation that advances the stream. Notice how the state that's returned
contains a copy of the input stream, thereby ensuring that matching a literal
never changes the input stream. This is important because each alternative of an
AlternationExpression should see identical copies of the input stream.

Now that we've defined the classes that make up an abstract syntax tree, we can
describe how to build it. Rather than write a parser for regular expressions, we'll
define some operations on the RegularExpression classes so that evaluating
a Smalltalk expression will produce an abstract syntax tree for the corresponding
regular expression. That lets us use the built-in Smalltalk compiler as if it's a parser
for regular expressions.

To build the abstract syntax tree, we'll need to define " |", "repeat", and
as operations on RegularExpression. These operations are defined in class
RegularExpression like this:

& anNode
SequenceExpression new

expressionl: self expression2: anNode asRExp

repeat
RepetitionExpression new repetition: self

INTERPRETER 251

| anNode
" AlternationExpression new
alternativel: self alternative2: anNode asRExp

asRExp
' self

The asRExp operation will convert literals into RegularExpressions. These
operations are defined in class String:

& anNode
" SequenceExpression new

expressionl: self asRExp expression2: anNode asRExp

repeat
" RepetitionExpression new repetition: self

| anNode
" AlternationExpression new

alternativel: self asRExp alternative2: anNode asRExp

asRExp
A LiteralExpression new components: self

If we defined these operations higher up in the class hierarchy (Sequenceable-
Collection in Smalltalk-80, IndexedCollection in Smalltalk/V), then they
would also be defined for classes such as Array and Order edCol lection. This
would let regular expressions match sequences of any kind of object.

The second example is a system for manipulating and evaluating Boolean expres
sions implemented in C++. The terminal symbols in this language are Boolean
variables, that is, the constants true and false. Nonterminal symbols represent
expressions containing the operators and, or, and not. The grammar is defined
as follows:1

BooleanExp ::= VariableExp | Constant | OrExp | AndExp | NotExp |
' (' B o o l e a n E x p ') '

AndExp ::= BooleanExp 'and' BooleanExp
OrExp ::= BooleanExp 'or' BooleanExp
NotExp ::= 'not' BooleanExp
Constant ::= 'true' | 'false'
VariableExp ::= 'A' j ' B ' | . . . | ' X ' | ' Y ' | ' Z '

We define two operations on Boolean expressions. The first, Evaluate, evaluates
a Boolean expression in a context that assigns a true or false value to each variable.
The second operation, Replace, produces a new Boolean expression by replacing
a variable with an expression. Replace shows how the Interpreter pattern can
be used for more than just evaluating expressions. In this case, it manipulates the
expression itself.

1 For simplicity, we ignore operator precedence and assume it's the responsibility of whichever object
constructs the syntax tree.

252 BEHAVIORAL PATTERNS CHAPTER 5

We give details of just the BooleanExp, VariableExp, and AndExp classes
here. Classes OrExp and NotExp are similar to AndExp. The Constant class
represents the Boolean constants.

BooleanExp defines the interface for all classes that define a Boolean expression:

class BooleanExp {
public:

BooleanExp();
virtual "BooleanExp();

virtual bool Evaluate(Contexts) = 0;
virtual BooleanExp* Replace(const char*, BooleanExpS) = 0;
virtual BooleanExp* CopyO const = 0;

) ;

The class Context defines a mapping from variables to Boolean values, which we
represent with the C++ constants true and false. Context has the following
interface:

class Context {
public:

bool Lookup(const char*) const;
void Assign(VariableExp*, bool);

} ;

A VariableExp represents a named variable:

class VariableExp : public BooleanExp {
public:

VariableExp(const char*);
virtual "VariableExp();

virtual bool Evaluate(Contexts);
virtual BooleanExp* Replace(const char*, BooleanExpS);
virtual BooleanExp* CopyO const;

private:
char* _name;

} ;

The constructor takes the variable's name as an argument:

VariableExp::VariableExp (const char* name) {
_name = strdup(name);

}

Evaluating a variable returns its value in the current context.

bool VariableExp:-.Evaluate (Contexts aContext) {
return aContext.Lookup(_name);

)

INTERPRETER 253

Copying a variable returns a new VariableExp:

BooleanExp* VariableExp::Copy () const {
return new VariableExp(_name);

}

To replace a variable with an expression, we check to see if the variable has the
same name as the one it is passed as an argument:

BooleanExp* VariableExp::Replace (
const char* name, BooleanExpS exp

) {

if (strcmp(name, _name) != 0) {
return exp.Copy();

} else {
return new VariableExp(_name);

)
}

An AndExp represents an expression made by ANDing two Boolean expressions
together.

class AndExp : public BooleanExp {
public:

AndExp(BooleanExp*, BooleanExp*);
virtual ~AndExp();

virtual bool Evaluate(Contexts);
virtual BooleanExp* Replace(const char*, BooleanExpS);
virtual BooleanExp* Copy() const;

private:
BooleanExp* _operandl;
BooleanExp* _operand2;

AndExp::AndExp (BooleanExp* opl, BooleanExp* op2) {
_operandl = opl;
_operand2 = op2 ;

}

Evaluating an AndExp evaluates its operands and returns the logical "and" of the
results.

bool AndExp::Evaluate (Contexts aContext) {
return

_operandl->Evaluate(aContext) &&
_operand2->Evaluate(aContext);

}

An AndExp implements Copy and Replace by making recursive calls on its
operands:

BEHAVIORAL PATTERNS CHAPTER 5

BooleanExp* AndExp::Copy () const {
return

new AndExp(_operandl->Copy(), _operand2->Copy());
}

BooleanExp* AndExp::Replace (const char* name, BooleanExp& exp) {
return

new AndExp(
_operandl->Replace(name, exp),
_operand2->Rep1ac e(name, exp)

) ;
}

Now we can define the Boolean expression

(true and x) or (y and (not x))

and evaluate it for a given assignment of true or false to the variables x and
y:

BooleanExp* expression;
Context context;

VariableExp* x = new VariableExp("X");
VariableExp* y = new VariableExp("Y");

expression = new OrExp(
new AndExp(new Constant(true), x),
new AndExp(y, new NotExp(x))

> ;

context.Assign(x, false);
context.Assign(y, true);

bool result = expression->Evaluate(context);

The expression evaluates to true for this assignment to x and y. We can evaluate
the expression with a different assignment to the variables simply by changing
the context.
Finally, we can replace the variable y with a new expression and then reevaluate
it:

BooleanExp* replacement;
VariableExp* z = new VariableExp("Z");

replacement = new NotExp(z);
expression->Replace("Y", *replacement);

context.Assign(z, true);

result = expression->Evaluate(context);

INTERPRETER 255

This example illustrates an important point about the Interpreter pattern: many
kinds of operations can "interpret" a sentence. Of the three operations defined
for BooleanExp, Evaluate fits our idea of what an interpreter should do most
closely—that is, it interprets a program or expression and returns a simple result.

However, Replace can be viewed as an interpreter as well. It's an interpreter
whose context is the name of the variable being replaced along with the expression
that replaces it, and whose result is a new expression. Even Copy can be thought
of as an interpreter with an empty context. It may seem a little strange to consider
Replace and Copy to be interpreters, because these are just basic operations
on trees. The examples in Visitor (331) illustrate how all three operations can be
refactored into a separate "interpreter" visitor, thus showing that the similarity is
deep.
The Interpreter pattern is more than just an operation distributed over a class
hierarchy that uses the Composite (163) pattern. We consider Evaluate an in
terpreter because we think of the BooleanExp class hierarchy as representing a
language. Given a similar class hierarchy for representing automotive part assem
blies, it's unlikely we'd consider operations like Weight and Copy as interpreters
even though they are distributed over a class hierarchy that uses the Compos
ite pattern—we just don't think of automotive parts as a language. It's a matter
of perspective; if we started publishing grammars of automotive parts, then we
could consider operations on those parts to be ways of interpreting the language.

Known Uses
The Interpreter pattern is widely used in compilers implemented with object-
oriented languages, as the Smalltalk compilers are. SPECTalk uses the pattern to
interpret descriptions of input file formats [Sza92]. The QOCA constraint-solving
toolkit uses it to evaluate constraints [HHMV92].

Considered in its most general form (i.e., an operation distributed over a class
hierarchy based on the Composite pattern), nearly every use of the Composite
pattern will also contain the Interpreter pattern. But the Interpreter pattern should
be reserved for those cases in which you want to think of the class hierarchy as
defining a language.

Related Patterns
Composite (163): The abstract syntax tree is an instance of the Composite pattern.

Flyweight (195) shows how to share terminal symbols within the abstract syntax
tree.

Iterator (257): The interpreter can use an Iterator to traverse the structure.

Visitor (331) can be used to maintain the behavior in each node in the abstract
syntax tree in one class.

4
- m

$

if., ' : . .

ITERATOR 257

ITERATOR Object Behavioral

Intent
Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

Also Known As
Cursor

VIotivation
An aggregate object such as a list should give you a way to access its elements
without exposing its internal structure. Moreover, you might want to traverse the
list in different ways, depending on what you want to accomplish. But you prob
ably don't want to bloat the List interface with operations for different traversals,
even if you could anticipate the ones we'll need. You might also need to have
more than one traversal pending on the same list.
The Iterator pattern lets you do all this. The key idea in this pattern is to take the
responsibility for access and traversal out of the list object and put it into an iterator
object. The Iterator class defines an interface for accessing the list's elements. An
iterator object is responsible for keeping track of the current element; that is, it
knows which elements have been traversed already.
For example, a List class would call for a Listlterator with the following relation
ship between them:

List
list Listlterator List Listlterator

Count() FirstQ

Append(Element) Next()

Remove(Element) IsDoneQ
Currentltem()

index

Before you can instantiate Listlterator, you must supply the List to traverse. Once
you have the Listlterator instance, you can access the list's elements sequentially.
The Currentltem operation returns the current element in the list, First initializes
the current element to the first element, Next advances the current element to
the next element, and IsDone tests whether we've advanced beyond the last
element—that is, we're finished with the traversal.

258 BEHAVIORAL PATTERNS CHAPTER 5

Separating the traversal mechanism from the List object lets us define iterators
for different traversal policies without enumerating them in the List interface. For
example, FilteringListlterator might provide access only to those elements that
satisfy specific filtering constraints.

Notice that the iterator and the list are coupled, and the client must know that
it is a list that's traversed as opposed to some other aggregate structure. Hence
the client commits to a particular aggregate structure. It would be better if we
could change the aggregate class without changing client code. We can do this by
generalizing the iterator concept to support polymorphic iteration.

As an example, let's assume that we also have a SkipList implementation of a
list. A skiplist [Pug90j is a probabilistic data structure with characteristics similar
to balanced trees. We want to be able to write code that works for both List and
SkipList objects.

We define an AbstractList class that provides a common interface for manipulating
lists. Similarly, we need an abstract Iterator class that defines a common iteration
interface. Then we can define concrete Iterator subclasses for the different list
implementations. As a result, the iteration mechanism becomes independent of
concrete aggregate classes.

The remaining problem is how to create the iterator. Since we want to write code
that s independent of the concrete List subclasses, we cannot simply instantiate
a specific class. Instead, we make the list objects responsible for creating their
corresponding iterator. This requires an operation like Createlterator through
which clients request an iterator object.

Createlterator is an example of a factory method (see Factory Method (107)). We
use it here to let a client ask a list object for the appropriate iterator. The Factory
Method approach give rise to two class hierarchies, one for lists and another for
iterators. The Createlterator factory method "connects" the two hierarchies.

ITERATOR 259

A. p plicability
Use the Iterator pattern

• to access an aggregate object's contents without exposing its internal repre
sentation.

• to support multiple traversals of aggregate objects.

• to provide a uniform interface for traversing different aggregate structures
(that is, to support polymorphic iteration).

S tincture

Participants
• Iterator

- defines an interface for accessing and traversing elements.

• Concretelterator

- implements the Iterator interface.

- keeps track of the current position in the traversal of the aggregate.

• Aggregate

- defines an interface for creating an Iterator object.

• ConcreteAggregate

- implements the Iterator creation interface to return an instance of the
proper Concretelterator.

260 BEHAVIORAL PATTERNS CHAPTER 5

Collaborations
• A Concretelterator keeps track of the current object in the aggregate and can

compute the succeeding object in the traversal.

Consequences
The Iterator pattern has three important consequences:

1. It supports variations in the traversal of an aggregate. Complex aggregates may
be traversed in many ways. For example, code generation and semantic
checking involve traversing parse trees. Code generation may traverse the
parse tree inorder or preorder. Iterators make it easy to change the traversal
algorithm: Just replace the iterator instance with a different one. You can also
define Iterator subclasses to support new traversals.

2. Iterators simplify the Aggregate interface. Iterator's traversal interface obviates
the need for a similar interface in Aggregate, thereby simplifying the aggre
gate's interface.

3. More than one traversal can be pending on an aggregate. An iterator keeps track
of its own traversal state. Therefore you can have more than one traversal in
progress at once.

Implementation
Iterator has many implementation variants and alternatives. Some important ones
follow. The trade-offs often depend on the control structures your language pro
vides. Some languages (CLU [LG86], for example) even support this pattern di
rectly.

1. Who controls the iteration? A fundamental issue is deciding which party con
trols the iteration, the iterator or the client that uses the iterator. When the
client controls the iteration, the iterator is called an external iterator, and
when the iterator controls it, the iterator is an internal iterator.2 Clients that
use an external iterator must advance the traversal and request the next el
ement explicitly from the iterator. In contrast, the client hands an internal
iterator an operation to perform, and the iterator applies that operation to
every element in the aggregate.

External iterators are more flexible than internal iterators. It's easy to compare
two collections for equality with an external iterator, for example, but it's
practically impossible with internal iterators. Internal iterators are especially
weak in a language like C++ that does not provide anonymous functions,
closures, or continuations like Smalltalk and CLOS. But on the other hand,

2Booch refers to external and internal iterators as active and passive iterators, respectively [Boo94]. The
terms active and passive" describe the role of the client, not the level of activity in the iterator.

ITERATOR 261

internal iterators are easier to use, because they define the iteration logic for
you.

2. Who defines the traversal algorithm ? The iterator is not the only place where the
traversal algorithm can be defined. The aggregate might define the traversal
algorithm and use the iterator to store just the state of the iteration. We call
this kind of iterator a cursor, since it merely points to the current position in
the aggregate. A client will invoke the Next operation on the aggregate with
the cursor as an argument, and the Next operation will change the state of
the cursor.3

If the iterator is responsible for the traversal algorithm, then it's easy to use
different iteration algorithms on the same aggregate, and it can also be easier
to reuse the same algorithm on different aggregates. On the other hand,
the traversal algorithm might need to access the private variables of the
aggregate. If so, putting the traversal algorithm in the iterator violates the
encapsulation of the aggregate.

3. How robust is the iterator? It can be dangerous to modify an aggregate while
you're traversing it. If elements are added or deleted from the aggregate,
you might end up accessing an element twice or missing it completely. A
simple solution is to copy the aggregate and traverse the copy, but that's too
expensive to do in general.
A robust iterator ensures that insertions and removals won't interfere with
traversal, and it does it without copying the aggregate. There are many ways
to implement robust iterators. Most rely on registering the iterator with the
aggregate. On insertion or removal, the aggregate either adjusts the internal
state of iterators it has produced, or it maintains information internally to
ensure proper traversal.
Kofler provides a good discussion of how robust iterators are implemented
in ET++ [Kof93]. Murray discusses the implementation of robust iterators
for the USL StandardComponents' List class [Mur93].

4. Additional Iterator operations. The minimal interface to Iterator consists of
the operations First, Next, IsDone, and Currentltem.4 Some additional op
erations might prove useful. For example, ordered aggregates can have a
Previous operation that positions the iterator to the previous element. A
SkipTo operation is useful for sorted or indexed collections. SkipTo positions
the iterator to an object matching specific criteria.

5. Using polymorphic iterators in C++. Polymorphic iterators have their cost. They
require the iterator object to be allocated dynamically by a factory method.
Hence they should be used only when there's a need for polymorphism.
Otherwise use concrete iterators, which can be allocated on the stack.

3 Cursors are a simple example of the Memento (283) pattern and share many of its implementation issues.
4 We can make this interface even smaller by merging Next, IsDone, and Currentltem into a single operation

r a t advances to the next object and returns it. If the traversal is finished, then this operation returns a special
: ue (0, for instance) that marks the end of the iteration.

BEHAVIORAL PATTERNS CHAPTER 5

Polymorphic iterators have another drawback: the client is responsible for
deleting them. This is error-prone, because it's easy to forget to free a heap-
allocated iterator object when you're finished with it. That's especially likely
when there are multiple exit points in an operation. And if an exception is
triggered, the iterator object will never be freed.
The Proxy (207) pattern provides a remedy. We can use a stack-allocated
proxy as a stand-in for the real iterator. The proxy deletes the iterator in
its destructor. Thus when the proxy goes out of scope, the real iterator will
get deallocated along with it. The proxy ensures proper cleanup, even in
the face of exceptions. This is an application of the well-known C++ tech
nique "resource allocation is initialization" [ES90]. The Sample Code gives
an example.

6. Iterators may have privileged access. An iterator can be viewed as an extension
of the aggregate that created it. The iterator and the aggregate are tightly cou
pled. We can express this close relationship in C++ by making the iterator a
friend of its aggregate. Then you don't need to define aggregate operations
whose sole purpose is to let iterators implement traversal efficiently.
However, such privileged access can make defining new traversals difficult,
since it'll require changing the aggregate interface to add another friend.
To avoid this problem, the Iterator class can include protected operations
for accessing important but publicly unavailable members of the aggregate.
Iterator subclasses (and only Iterator subclasses) may use these protected
operations to gain privileged access to the aggregate.

7. Iterators for composites. External iterators can be difficult to implement over
recursive aggregate structures like those in the Composite (163) pattern, be
cause a position in the structure may span many levels of nested aggregates.
Therefore an external iterator has to store a path through the Composite to
keep track of the current object. Sometimes it's easier just to use an internal
iterator. It can record the current position simply by calling itself recursively,
thereby storing the path implicitly in the call stack.
If the nodes in a Composite have an interface for moving from a node to
its siblings, parents, and children, then a cursor-based iterator may offer a
better alternative. The cursor only needs to keep track of the current node; it
can rely on the node interface to traverse the Composite.
Composites often need to be traversed in more than one way. Preorder,
postorder, inorder, and breadth-first traversals are common. You can support
each kind of traversal with a different class of iterator.

8. Null iterators. A Nulllterator is a degenerate iterator that's helpful for han
dling boundary conditions. By definition, a Nulllterator is always done with
traversal; that is, its IsDone operation always evaluates to true.
Nulllterator can make traversing tree-structured aggregates (like Compos
ites) easier. At each point in the traversal, we ask the current element for
an iterator for its children. Aggregate elements return a concrete iterator

ITERATOR 263

as usual. But leaf elements return an instance of Nulllterator. That lets us
implement traversal over the entire structure in a uniform way.

Saxriple Code
We'll look at the implementation of a simple List class, which is part of our
foundation library (Appendix C). We'll show two Iterator implementations, one
for traversing the List in front-to-back order, and another for traversing back-to-
front (the foundation library supports only the first one). Then we show how to
use these iterators and how to avoid committing to a particular implementation.
After that, we change the design to make sure iterators get deleted properly.
The last example illustrates an internal iterator and compares it to its external
counterpart.

1. List and Iterator interfaces. First let's look at the part of the List interface that's
relevant to implementing iterators. Refer to Appendix C for the full interface.

template cclass Item>
class List {
public:

List(long size = DEFAULT_LIST_CAPACITY);

long Count() const;
Item& Get(long index) const;
I I . . .

} ;

The List class provides a reasonably efficient way to support iteration
through its public interface. It's sufficient to implement both traversals. So
there's no need to give iterators privileged access to the underlying data
structure; that is, the iterator classes are not friends of List. To enable trans
parent use of the different traversals we define an abstract Iterator class,
which defines the iterator interface.

template cclass Item>
class Iterator {
public:

virtual void First() = 0;
virtual void Next() = 0;
virtual bool IsDoneO const = 0;
virtual Item Currentltem() const = 0;

protected:
Iterator() ;

} ;

2. Iterator subclass implementations. Listlterator is a subclass of Iterator.

BEHAVIORAL PATTERNS CHAPTER 5

template cclass Item>
class Listlterator : public Iterator<Item> {
public:

Listlterator(const List<Item>* aList);
virtual void First();
virtual void Next();
virtual bool IsDoneO const;
virtual Item Currentltem() const;

private:
const List<Item>* _list;
long _current;

} ;

The implementation of Li s 111 era tor is straightforward. It stores the List
along with an index .current into the list:

template <class Item>
ListIterator<Item>::Listlterator (

const List<Item>* aList
) : _list(aList), _current(0) {
}

First positions the iterator to the first element:

template cclass Item>
void ListIterator<Item>::First () {

_current = 0;
}

Next advances the current element:

template cclass Item>
void ListIteratorcltem>::Next () {

_current++;
}

Is Done checks whether the index refers to an element within the List:

template cclass Item>
bool ListIteratorcltem>::IsDone () const {

return _current >= _list->Count();
}

Finally, Currentltem returns the item at the current index. If the iteration
has already terminated, then we throw an I teratorOutOf Bounds excep
tion:

template cclass Item>
Item ListIteratorcltem>::CurrentItem () const {

if (IsDoneO) {
throw IteratorOutOfBounds;

}

return _list->Get(_current);
}

ITERATOR 265

The implementation of ReverseListlterator is identical, except its First op
eration positions .current to the end of the list, and Next decrements
.current toward the first item.

3. Using the iterators. Let's assume we have a List of Employee objects,
and we would like to print all the contained employees. The Employee
class supports this with a Print operation. To print the list, we define a
PrintEmployees operation that takes an iterator as an argument. It uses
the iterator to traverse and print the list.

void PrintEmployees (Iterator<Employee*>& i) {
for (i.First (); !i.IsDone(); i.NextO) {

i.Currentltem()->Print();
}

)

Since we have iterators for both back-to-front and front-to-back traversals,
we can reuse this operation to print the employees in both orders.

List<Employee*>* employees;
// ...
ListIterator<Employee*> forward(employees);
ReverseListIterator<Employee*> backward(employees);

PrintEmployees(forward);
PrintEmployees(backward);

4. Avoiding commitment to a specific list implementation. Let's consider how a
skiplist variation of List would affect our iteration code. A SkipList
subclass of List must provide a SkipListlterator that imple
ments the Iterator interface. Internally, the SkipListlterator has
to keep more than just an index to do the iteration efficiently. But
since SkipListlterator conforms to the Iterator interface, the
PrintEmployees operation can also be used when the employees are stored
in a SkipList object.

SkipList<Employee*>* employees;
I I . . .

SkipListIterator<Employee*> iterator(employees);
PrintEmployees(iterator);

Although this approach works, it would be better if we didn't have to commit
to a specific List implementation, namely SkipList. We can introduce an
Abstract Li st class to standardize the list interface for different list imple
mentations. List and SkipList become subclasses of AbstractList.
To enable polymorphic iteration, AbstractList defines a factory method
Createlterator, which subclasses override to return their corresponding
iterator:

266 BEHAVIORAL PATTERNS CHAPTER 5

template <class Item>
class AbstractList {
public:

virtual Iterator<Item>* Createlterator() const = 0;
// ...

} ;

An alternative would be to define a general mixin class Traversable that
defines the interface for creating an iterator. Aggregate classes can mix in
Traversable to support polymorphic iteration.
List overrides Createlterator to return a Listlterator object:

template cclass Item>
Iterator<Item>* List<Item>::Createlterator () const {

return new ListIterator<Item>(this);
}

Now we're in a position to write the code for printing the employees inde
pendent of a concrete representation.

/ / w e k n o w o n l y t h a t w e h a v e a n A b s t r a c t L i s t
AbstractList<Employee*>* employees;
I I . . .

Iterator<Employee*>* iterator = employees->CreateIterator();
PrintEmployees(*iterator);
delete iterator;

5. Making sure iterators get deleted. Notice that Createlterator returns a
newly allocated iterator object. We're responsible for deleting it. If we forget,
then we've created a storage leak. To make life easier for clients, we'll provide
an IteratorPtr that acts as a proxy for an iterator. It takes care of cleaning
up the Iterator object when it goes out of scope.
IteratorPtr is always allocated on the stack.5 C++ automatically takes
care of calling its destructor, which deletes the real iterator. IteratorPtr
overloads both operator-> and operator* in such a way that an
IteratorPtr can be treated just like a pointer to an iterator. The mem
bers of IteratorPtr are all implemented inline; thus they can incur no
overhead.

template <class Item>
class IteratorPtr {
public:

IteratorPtr(Iterator<Item>* i): _i(i) { }
""IteratorPtr () { delete _i; }

B You can ensure this at compile-time just by declaring private new and delete operators. An accompa
nying implementation isn't needed.

ITERATOR 267

Iterator<Item>* operator->() { return _i; }
Iterator<Item>& operator*() { return *_i; }

private:
// disallow copy and assignment to avoid
II multiple deletions of _i:

IteratorPtr(const IteratorPtr&);
IteratorPtrfc operator=(const IteratorPtr&);

private:
Iterator*:Item>* _i;

} ;

IteratorPtr lets us simplify our printing code:

AbstractList<Employee*>* employees;
// ...

IteratorPtr<Employee*> iterator(employees->CreateIterator());
PrintEmployees(*iterator);

6. An internal Listlterator. As a final example, let's look at a possible implementa
tion of an internal or passive Li s 111 era tor class. Here the iterator controls
the iteration, and it applies an operation to each element.
The issue in this case is how to parameterize the iterator with the operation
we want to perform on each element. C++ does not support anonymous
functions or closures that other languages provide for this task. There are at
least two options: (1) Pass in a pointer to a function (global or static), or (2)
rely on subclassing. In the first case, the iterator calls the operation passed
to it at each point in the iteration. In the second case, the iterator calls an
operation that a subclass overrides to enact specific behavior.
Neither option is perfect. Often you want to accumulate state during the
iteration, and functions aren't well-suited to that; we would have to use
static variables to remember the state. An Iterator subclass provides us
with a convenient place to store the accumulated state, like in an instance
variable. But creating a subclass for every different traversal is more work.
Here's a sketch of the second option, which uses subclassing. We call the
internal iterator a ListTraverser.

template <class Item>
class ListTraverser {
public:

ListTraverser(List<Item>* aList);
bool Traverse();

protected:
virtual bool ProcessItem(const Item&) = 0;

private:
ListIterator<Item> _iterator;

) ;

ListTraverser takes a List instance as a parameter. Internally it uses an
external Listlterator to do the traversal. Traverse starts the traversal

BEHAVIORAL PATTERNS CHAPTER 5

and calls Processltem for each item. The internal iterator can choose to
terminate a traversal by returning false from Processltem. Traverse
returns whether the traversal terminated prematurely.

template cclass Item>
ListTraverser<Item>::ListTraverser (

List<Item>* aList
) : _iterator(aList) { }

template cclass Item>
bool ListTraverser<Item>::Traverse () {

bool result = false;

for (
_iterator.First();
!_iterator.IsDone();
.iterator.Next()

{
result = Processltem(.iterator.Currentltem());

if (result == false) {
break;

} '
}
return result;

Let's use a ListTraverser to print the first 10 employees from our em
ployee list. To do it we have to subclass ListTraverser and override
Processltem. We count the number of printed employees in a .count
instance variable.

class PrintNEmployees : public ListTraverser<Employee*> {
public:

PrintNEmployees(List<Employee*>* aList, int n) :
ListTraverser<Employee*>(aList) ,
.total(n), .count(0) { }

protected:
bool Processltem(Employee* const&);

private:
int .total;
int .count;

} ;

bool PrintNEmployees::Processltem (Employee* const& e) {
.count++;
e->Print();
return .count < .total;

)

Here's how PrintNEmployees prints the first 10 employees on the list:

ITERATOR 269

List<Employee*>* employees;

// ...

PrintNEmployees pa(employees, 10);
pa.Traverse();

Note how the client doesn't specify the iteration loop. The entire iteration
logic can be reused. This is the primary benefit of an internal iterator. It's a
bit more work than an external iterator, though, because we have to define a
new class. Contrast this with using an external iterator:

ListIterator<Employee*> i(employees);
int count = 0;

for (i.FirstO; li.IsDoneO; i.NextO) {
count++;
i .Currentltem()->Print();

if (count >=10) {
break;

}
}

Internal iterators can encapsulate different kinds of iteration. For example,
FilteringListTraverser encapsulates an iteration that processes only
items that satisfy a test:

template cclass Item>
class FilteringListTraverser {
public:

FilteringListTraverser(List<Item>* aList);
bool Traverse();

protected:
virtual bool Processltem(const Item&) = 0;
virtual bool Testltem(const Item&) = 0;

private:
ListIterator<Item> .iterator;

) ;

This interface is the same as ListTraverser's except for an added
Testltem member function that defines the test. Subclasses override
Testltem to specify the test.
Traverse decides to continue the traversal based on the outcome of the test:

template cclass Item>
void FilteringListTraverser<Item>::Traverse () {

bool result = false;

for (
_iterator.First();
!_iterator.IsDone();
_iterator.Next()

) (

if (TestItem(_iterator.Currentltem())) {
result = Processltem(.iterator.Currentltem());

270 BEHAVIORAL PATTERNS CHAPTER 5

if (result == false) {
break;

}
}

)
return result;

}

A variant of this class could define Traverse to return if at least one item
satisfies the test.6

Known Uses
Iterators are common in object-oriented systems. Most collection class libraries
offer iterators in one form or another.

Here's an example from the Booch components [Boo94], a popular collection
class library. It provides both a fixed size (bounded) and dynamically growing
(unbounded) implementation of a queue. The queue interface is defined by an
abstract Queue class. To support polymorphic iteration over the different queue
implementations, the queue iterator is implemented in the terms of the abstract
Queue class interface. This variation has the advantage that you don't need a
factory method to ask the queue implementations for their appropriate iterator.
However, it requires the interface of the abstract Queue class to be powerful
enough to implement the iterator efficiently.

Iterators don't have to be defined as explicitly in Smalltalk. The standard collection
classes (Bag, Set, Dictionary, OrderedCollection, String, etc.) define an internal
iterator method do:, which takes a block (i.e., closure) as an argument. Each
element in the collection is bound to the local variable in the block; then the block
is executed. Smalltalk also includes a set of Stream classes that support an iterator
like interface. ReadStream is essentially an Iterator, and it can act as an external
iterator for all the sequential collections. There are no standard external iterators
for nonsequential collections such as Set and Dictionary.

Polymorphic iterators and the cleanup Proxy described earlier are provided by
the ET++ container classes [WGM881. The Unidraw graphical editing framework
classes use cursor-based iterators [VL90].

ObjectWindows 2.0 [Bor94] provides a class hierarchy of iterators for containers.
You can iterate over different container types in the same way. The ObjectWindow
iteration syntax relies on overloading the postincrement operator + + to advance
the iteration.

Related Patterns
Composite (163): Iterators are often applied to recursive structures such as Com
posites.

6The Traverse operation in these examples is a Template Method (325) with primitive operations
Testltemand Processltem.

ITERATOR 271

- -ictory Method (107): Polymorphic iterators rely on factory methods to instantiate
appropriate Iterator subclass.

^ 'emento (283) is often used in conjunction with the Iterator pattern. An iterator
- a. n use a memento to capture the state of an iteration. The iterator stores the
'"emento internally.

• 5 M l

1 i < A 1

\ %
S i '

: <' >$

•' • . I •

MEDIATOR 273

MEDIATOR Object Behavioral

Intent
Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it
lets you vary their interaction independently.

Motivation
Object-oriented design encourages the distribution of behavior among objects.
Such distribution can result in an object structure with many connections between
objects; in the worst case, every object ends up knowing about every other.

Though partitioning a system into many objects generally enhances reusability,
proliferating interconnections tend to reduce it again. Lots of interconnections
make it less likely that an object can work without the support of others—the
system acts as though it were monolithic. Moreover, it can be difficult to change
the system's behavior in any significant way, since behavior is distributed among
many objects. As a result, you may be forced to define many subclasses to cus
tomize the system's behavior.

As an example, consider the implementation of dialog boxes in a graphical user
interface. A dialog box uses a window to present a collection of widgets such as
buttons, menus, and entry fields, as shown here:

•1 ttH)

The quick brown fox.
Family

Chicago
courier
helvetica

av ant garde

palatino
times roman
zapf dingbats

Weight Omedium ®bold Cdemiboid

Size 34 pt £ Dcondensed

274 BEHAVIORAL PATTERNS CHAPTER 5

Often there are dependencies between the widgets in the dialog. For example,
a button gets disabled when a certain entry field is empty. Selecting an entry
in a list of choices called a list box might change the contents of an entry field.
Conversely, typing text into the entry field might automatically select one or more
corresponding entries in the list box. Once text appears in the entry field, other
buttons may become enabled that let the user do something with the text, such as
changing or deleting the thing to which it refers.

Different dialog boxes will have different dependencies between widgets. So even
though dialogs display the same kinds of widgets, they can't simply reuse stock
widget classes; they have to be customized to reflect dialog-specific dependencies.
Customizing them individually by subclassing will be tedious, since many classes
are involved.

You can avoid these problems by encapsulating collective behavior in a separate
mediator object. A mediator is responsible for controlling and coordinating the
interactions of a group of objects. The mediator serves as an intermediary that
keeps objects in the group from referring to each other explicitly. The objects only
know the mediator, thereby reducing the number of interconnections.

For example, FontDialogDirector can be the mediator between the widgets in
a dialog box. A FontDialogDirector object knows the widgets in a dialog and
coordinates their interaction. It acts as a hub of communication for widgets:

/" X
aListBox

director

The following interaction diagram illustrates how the objects cooperate to handle
a change in a list box's selection:

MEDIATOR 275

aClient

X

Mediator
aFontDialogDirector

Colleagues

aListBox anEntryField

ShowDialogO

WidgetChangedf)

[GetSelectionf) [

SetTextQ

[

T

Here's the succession of events by which a list box's selection passes to an entry
field:

1. The list box tells its director that it's changed.

2. The director gets the selection from the list box.

3. The director passes the selection to the entry field.

4. Now that the entry field contains some text, the director enables button(s)
for initiating an action (e.g., "demibold," "oblique").

Note how the director mediates between the list box and the entry field. Widgets
communicate with each other only indirectly, through the director. They don't
have to know about each other; all they know is the director. Furthermore, because
the behavior is localized in one class, it can be changed or replaced by extending
or replacing that class.

Here's how the FontDialogDirector abstraction can be integrated into a class
library:

DialogDIrector director

ShowDialogQ
CreateWidgetsf)
WidgetChanged(Widget)

Widget

Changed() o- director->WidgetChanged(this)

FontDialogDirector

CreateWidgets()
WidgetChanged(Widget)

list
ListBox

GetSelectionQ

field

EntryField

SetTextQ

276 BEHAVIORAL PATTERNS CHAPTER 5

DialogDirector is an abstract class that defines the overall behavior of a dia
log. Clients call the ShowDialog operation to display the dialog on the screen.
CreateWidgets is an abstract operation for creating the widgets of a dialog. Wid-
getChanged is another abstract operation; widgets call it to inform their director
that they have changed. DialogDirector subclasses override CreateWidgets to cre
ate the proper widgets, and they override WidgetChanged to handle the changes.

Applicability
Use the Mediator pattern when

• a set of objects communicate in well-defined but complex ways. The resulting
interdependencies are unstructured and difficult to understand.

• reusing an object is difficult because it refers to and communicates with many
other objects.

• a behavior that's distributed between several classes should be customizable
without a lot of subclassing.

Structure

A typical object structure might look like this:

MEDIATOR 277

Participants
• Mediator (DialogDirector)

- defines an interface for communicating with Colleague objects.

• ConcreteMediator (FontDialogDirector)

- implements cooperative behavior by coordinating Colleague objects.

- knows and maintains its colleagues.

• Colleague classes (ListBox, EntryField)

- each Colleague class knows its Mediator object.

- each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague.

Collaborations
• Colleagues send and receive requests from a Mediator object. The mediator

implements the cooperative behavior by routing requests between the appro
priate colleague(s).

Consequences
The Mediator pattern has the following benefits and drawbacks:

1. It limits subclassing. A mediator localizes behavior that otherwise would be
distributed among several objects. Changing this behavior requires subclass
ing Mediator only; Colleague classes can be reused as is.

2. It decouples colleagues. A mediator promotes loose coupling between col
leagues. You can vary and reuse Colleague and Mediator classes indepen
dently.

3. It simplifies object protocols. A mediator replaces many-to-many interactions
with one-to-many interactions between the mediator and its colleagues. One-
to-many relationships are easier to understand, maintain, and extend.

4. It abstracts how objects cooperate. Making mediation an independent concept
and encapsulating it in an object lets you focus on how objects interact apart
from their individual behavior. That can help clarify how objects interact in
a system.

5. It centralizes control. The Mediator pattern trades complexity of interaction
for complexity in the mediator. Because a mediator encapsulates protocols,
it can become more complex than any individual colleague. This can make
the mediator itself a monolith that's hard to maintain.

278 BEHAVIORAL PATTERNS CHAPTER 5

Implementation
The following implementation issues are relevant to the Mediator pattern:

1. Omitting the abstract Mediator class. There's no need to define an abstract
Mediator class when colleagues work with only one mediator. The abstract
coupling that the Mediator class provides lets colleagues work with different
Mediator subclasses, and vice versa.

2. Colleague-Mediator communication. Colleagues have to communicate with
their mediator when an event of interest occurs. One approach is to im
plement the Mediator as an Observer using the Observer (293) pattern. Col
league classes act as Subjects, sending notifications to the mediator whenever
they change state. The mediator responds by propagating the effects of the
change to other colleagues.
Another approach defines a specialized notification interface in Mediator
that lets colleagues be more direct in their communication. Smalltalk/V for
Windows uses a form of delegation: When communicating with the media
tor, a colleague passes itself as an argument, allowing the mediator to identify
the sender. The Sample Code uses this approach, and the Smalltalk/V im
plementation is discussed further in the Known Uses.

Sample Code
We'll use a DialogDirector to implement the font dialog box shown in the Moti
vation. The abstract class DialogDirector defines the interface for directors.

class DialogDirector {
public:

virtual "DialogDirector();

virtual void ShowDialog();
virtual void WidgetChanged(Widget*) = 0;

protected:
DialogDirector();
virtual void CreateWidgets() = 0;

} ;

Widget is the abstract base class for widgets. A widget knows its director.

class Widget {
public:

Widget(DialogDirector*);
virtual void ChangedO;

virtual void HandleMouse(MouseEventfc event);
I I . . .

private:
DialogDirector* .director;

} ;

MEDIATOR 279

Changed calls the director's WidgetChanged operation. Widgets call
WidgetChanged on their director to inform it of a significant event.

void Widget::Changed () {
_director->WidgetChanged(this);

}

Subclasses of DialogDirector override WidgetChanged to affect the ap
propriate widgets. The widget passes a reference to itself as an argument
to WidgetChanged to let the director identify the widget that changed.
DialogDirector subclasses redefine the CreateWidgets pure virtual to con
struct the widgets in the dialog.

The ListBox, EntryField, and Button are subclasses of Widget for special
ized user interface elements. ListBox provides a GetSelection operation to
get the current selection, and EntryField's SetText operation puts new text
into the field.

class ListBox : public Widget {
public:

ListBox(DialogDirector*);

virtual const char* GetSelection();
virtual void SetList(List<char*>* listltems);
virtual void HandleMouse (MouseEventSc event);
// ...

} ;

class EntryField : public Widget {
public:

EntryField(DialogDirector*);

virtual void SetText(const char* text);
virtual const char* GetText();
virtual void HandleMouse(MouseEvent& event);
// ...

} ;

Button is a simple widget that calls Changed whenever it's pressed. This gets
done in its implementation of HandleMouse:

class Button : public Widget {
public:

Button(DialogDirector*);

virtual void SetText(const char* text);
virtual void HandleMouse(MouseEventSc event);
II...

};

280 BEHAVIORAL PATTERNS CHAPTER 5

void Button::HandleMouse (MouseEvent& event) {
I I . . .
Changed();

}

The FontDialogDirector class mediates between widgets in the dialog box.
FontDialogDirector is a subclass of DialogDirector:

class FontDialogDirector : public DialogDirector {
public:

FontDialogDirector();
virtual "FontDialogDirector();
virtual void WidgetChanged(Widget*);

protected:
virtual void CreateWidgets();

private:
Button* _ok;
Button* _cancel;
ListBox* _fontList;
EntryField* _fontName;

FontDialogDirector keeps track of the widgets it displays. It redefines
CreateWidgets to create the widgets and initialize its references to them:

void FontDialogDirector::CreateWidgets () {
_ok = new Button(this);
_cancel = new Button(this);
_fontList = new ListBox(this);
_fontName = new EntryField(this);

// fill the listBox with the available font names

// assemble the widgets in the dialog
)

WidgetChanged ensures that the widgets work together properly:

void FontDialogDirector::WidgetChanged (
Widget* theChangedWidget

) {

if (theChangedWidget == _fontList) {
_fontName->SetText(_fontList->GetSelection()) ;

} else if (theChangedWidget == _ok) {
// apply font change and dismiss dialog
I I . . .

MEDIATOR 281

} else if (theChangedWidget == _cancel]
// dismiss dialog

}

The complexity of WidgetChanged increases proportionally with the complexity
of the dialog. Large dialogs are undesirable for other reasons, of course, but
mediator complexity might mitigate the pattern's benefits in other applications.

Known Uses
Both ET++ [WGM88] and the THINK C class library [Sym93b] use director-like
objects in dialogs as mediators between widgets.

The application architecture of Smalltalk/V for Windows is based on a media
tor structure [LaL94j. In that environment, an application consists of a Window
containing a set of panes. The library contains several predefined Pane objects;
examples include TextPane, ListBox, Button, and so on. These panes can be used
without subclassing. An application developer only subclasses from ViewMan-
ager, a class that's responsible for doing inter-pane coordination. ViewManager is
the Mediator, and each pane only knows its view manager, which is considered
the "owner" of the pane. Panes don't refer to each other directly.

The following object diagram shows a snapshot of an application at run-time:

aListBox

aTextPane

owner

aButton

aViewManager

textPane
listBox
button

Smalltalk/V uses an event mechanism for Pane-ViewManager communication. A
pane generates an event when it wants to get information from the mediator or
when it wants to inform the mediator that something significant happened. An
event defines a symbol (e.g., #select) that identifies the event. To handle the
event, the view manager registers a method selector with the pane. This selector
is the event s handler; it will be invoked whenever the event occurs.

282 BEHAVIORAL PATTERNS CHAPTER 5

The following code excerpt shows how a ListPane object gets created inside a
ViewManager subclass and how ViewManager registers an event handler for the
#select event:

self addSubpane: (ListPane new
paneName: 'myListPane';
owner: self;
when: #select perform: #listSelect:).

Another application of the Mediator pattern is in coordinating complex updates.
An example is the ChangeManager class mentioned in Observer (293). Change-
Manager mediates between subjects and observers to avoid redundant updates.
When an object changes, it notifies the ChangeManager, which in turn coordinates
the update by notifying the object's dependents.

A similar application appears in the Unidraw drawing framework [VL90] and uses
a class called CSolver to enforce connectivity constraints between "connectors."
Objects in graphical editors can appear to stick to one another in different ways.
Connectors are useful in applications that maintain connectivity automatically,
like diagram editors and circuit design systems. CSolver is a mediator between
connectors. It solves the connectivity constraints and updates the connectors'
positions to reflect them.

Related Patterns
Facade (185) differs from Mediator in that it abstracts a subsystem of objects
to provide a more convenient interface. Its protocol is unidirectional; that is,
Facade objects make requests of the subsystem classes but not vice versa. In
contrast, Mediator enables cooperative behavior that colleague objects don't or
can't provide, and the protocol is multidirectional.

Colleagues can communicate with the mediator using the Observer (293) pattern.

MEMENTO 283

MEMENTO Object Behavioral

Intent
Without violating encapsulation, capture and externalize an object's internal state
so that the object can be restored to this state later.

Also Known As
Token

Motivation
Sometimes it's necessary to record the internal state of an object. This is required
when implementing checkpoints and undo mechanisms that let users back out of
tentative operations or recover from errors. You must save state information some
where so that you can restore objects to their previous states. But objects normally
encapsulate some or all of their state, making it inaccessible to other objects and
impossible to save externally. Exposing this state would violate encapsulation,
which can compromise the application's reliability and extensibility.

Consider for example a graphical editor that supports connectivity between ob
jects. A user can connect two rectangles with a line, and the rectangles stay con
nected when the user moves either of them. The editor ensures that the line
stretches to maintain the connection.

A well-known way to maintain connectivity relationships between objects is with
a constraint-solving system. We can encapsulate this functionality in a Constraint-
Solver object. ConstraintSolver records connections as they are made and gener
ates mathematical equations that describe them. It solves these equations when
ever the user makes a connection or otherwise modifies the diagram. Constraint-
Solver uses the results of its calculations to rearrange the graphics so that they
maintain the proper connections.

Supporting undo in this application isn't as easy as it may seem. An obvious way
to undo a move operation is to store the original distance moved and move the

284 BEHAVIORAL PATTERNS CHAPTER 5

object back an equivalent distance. However, this does not guarantee all objects
will appear where they did before. Suppose there is some slack in the connec
tion. In that case, simply moving the rectangle back to its original location won't
necessarily achieve the desired effect.

In general, the ConstraintSolver's public interface might be insufficient to allow
precise reversal of its effects on other objects. The undo mechanism must work
more closely with ConstraintSolver to reestablish previous state, but we should
also avoid exposing the ConstraintSolver's internals to the undo mechanism.

We can solve this problem with the Memento pattern. A memento is an object
that stores a snapshot of the internal state of another object—the memento's
originator. The undo mechanism will request a memento from the originator
when it needs to checkpoint the originator's state. The originator initializes the
memento with information that characterizes its current state. Only the originator
can store and retrieve information from the memento—the memento is "opaque"
to other objects.

In the graphical editor example just discussed, the ConstraintSolver can act as an
originator. The following sequence of events characterizes the undo process:

1. The editor requests a memento from the ConstraintSolver as a side-effect of
the move operation.

2. The ConstraintSolver creates and returns a memento, an instance of a class
SolverState in this case. A SolverState memento contains data structures that
describe the current state of the ConstraintSolver's internal equations and
variables.

3. Later when the user undoes the move operation, the editor gives the Solver
State back to the ConstraintSolver.

4. Based on the information in the SolverState, the ConstraintSolver changes
its internal structures to return its equations and variables to their exact
previous state.

This arrangement lets the ConstraintSolver entrust other objects with the infor
mation it needs to revert to a previous state without exposing its internal structure
and representations.

MEMENTO 285

Applicability
Use the Memento pattern when

• a snapshot of (some portion of) an object's state must be saved so that it can
be restored to that state later, and

• a direct interface to obtaining the state would expose implementation details
and break the object's encapsulation.

Structure

Participants
• Memento (SolverState)

- stores internal state of the Originator object. The memento may store as
much or as little of the originator's internal state as necessary at its origi
nator's discretion.

- protects against access by objects other than the originator. Mementos
have effectively two interfaces. Caretaker sees a narrow interface to the
Memento—it can only pass the memento to other objects. Originator, in
contrast, sees a wide interface, one that lets it access all the data necessary to
restore itself to its previous state. Ideally, only the originator that produced
the memento would be permitted to access the memento's internal state.

• Originator (ConstraintSolver)

- creates a memento containing a snapshot of its current internal state.

- uses the memento to restore its internal state.

• Caretaker (undo mechanism)

- is responsible for the memento's safekeeping.

- never operates on or examines the contents of a memento.

286 BEHAVIORAL PATTERNS CHAPTER 5

Collaborations
A caretaker requests a memento from an originator, holds it for a time, and
passes it back to the originator, as the following interaction diagram illustrates:

aCaretaker anOriginator

CreateMemento()

aMemento

SetMemento(aMemento)

new Memento

SetState() 3
GetState() c

Sometimes the caretaker won't pass the memento back to the originator, be
cause the originator might never need to revert to an earlier state.

• Mementos are passive. Only the originator that created a memento will assign
or retrieve its state.

Consequences
The Memento pattern has several consequences:

1. Preserving encapsulation boundaries. Memento avoids exposing information
that only an originator should manage but that must be stored nevertheless
outside the originator. The pattern shields other objects from potentially
complex Originator internals, thereby preserving encapsulation boundaries.

2. It simplifies Originator. In other encapsulation-preserving designs, Originator
keeps the versions of internal state that clients have requested. That puts
all the storage management burden on Originator. Having clients manage
the state they ask for simplifies Originator and keeps clients from having to
notify originators when they're done.

3. Using mementos might be expensive. Mementos might incur considerable over
head if Originator must copy large amounts of information to store in the
memento or if clients create and return mementos to the originator often
enough. Unless encapsulating and restoring Originator state is cheap, the
pattern might not be appropriate. See the discussion of incrementality in the
Implementation section.

4. Defining narrow and wide interfaces. It may be difficult in some languages to
ensure that only the originator can access the memento's state.

5. Hidden costs in caring for mementos. A caretaker is responsible for deleting the
mementos it cares for. However, the caretaker has no idea how much state is

MEMENTO 287

in the memento. Hence an otherwise lightweight caretaker might incur large
storage costs when it stores mementos.

Implementation
Here are two issues to consider when implementing the Memento pattern:

1. Language support. Mementos have two interfaces: a wide one for originators
and a narrow one for other objects. Ideally the implementation language
will support two levels of static protection. C++ lets you do this by making
the Originator a friend of Memento and making Memento's wide interface
private. Only the narrow interface should be declared public. For example:

class State;

class Originator {
public:

Memento* CreateMemento();
void SetMemento(const Memento*);
I I . . .

private:
State* _state; // internal data structures
I I . . .

} ;

class Memento {
public:

// narrow public interface
virtual ~Memento();

private:
// private members accessible only to Originator
friend class Originator;
Memento();

void SetState(State*);
State* GetState();
I I . . .

private:
State* _state;
I I . . .

} ;

2. Storing incremental changes. When mementos get created and passed back to
their originator in a predictable sequence, then Memento can save just the
incremental change to the originator's internal state.
For example, undoable commands in a history list can use mementos to en
sure that commands are restored to their exact state when they're undone
(see Command (233)). The history list defines a specific order in which com
mands can be undone and redone. That means mementos can store just the
incremental change that a command makes rather than the full state of every
object they affect. In the Motivation example given earlier, the constraint
solver can store only those internal structures that change to keep the line

288 BEHAVIORAL PATTERNS CHAPTER 5

connecting the rectangles, as opposed to storing the absolute positions of
these objects.

Sample Code
The C++ code given here illustrates the ConstraintSolver example discussed ear
lier. We use MoveCommand objects (see Command (233)) to (un)do the translation
of a graphical object from one position to another. The graphical editor calls the
command's Execute operation to move a graphical object and Unexecute to
undo the move. The command stores its target, the distance moved, and an in
stance of ConstraintSolverMemento, a memento containing state from the
constraint solver.

class Graphic;

// base class for graphical objects in the graphical editor

class MoveCommand {
public:

MoveCommand(Graphic* target, const Points delta);
void Execute();
void Unexecute();

private:
ConstraintSolverMemento* _state;
Point _delta;
Graphic* _target;

} ;

The connection constraints are established by the class ConstraintSolver.
Its key member function is Solve, which solves the constraints registered with
the AddConstraint operation. To support undo, ConstraintSolver's state
can be externalized with CreateMemento into a ConstraintSolverMemento
instance. The constraint solver can be returned to a previous state by railing
SetMemento. ConstraintSolver is a Singleton (127).

class ConstraintSolver {
public:

static ConstraintSolver* Instance();

void Solve();
void AddConstraint(

Graphic* startConnection, Graphic* endConnection
) ;

void RemoveConstraint(
Graphic* startConnection, Graphic* endConnection

) ;

MEMENTO 289

ConstraintSolverMemento* CreateMemento();
void SetMemento(ConstraintSolverMemento*);

private:
// nontrivial state and operations for enforcing
// connectivity semantics

class ConstraintSolverMemento {
public:

virtual "ConstraintSolverMemento();
private:

friend class ConstraintSolver;
ConstraintSolverMemento();

// private constraint solver state
} ;

Given these interfaces, we can implement MoveCommand members Execute and
Unexecute as follows:

void MoveCommand::Execute () {
ConstraintSolver* solver = ConstraintSolver::Instance();
_state = solver->CreateMemento(); // create a memento
_target->Move(_delta);
solver->Solve();

void MoveCommand::Unexecute () {
ConstraintSolver* solver = ConstraintSolver::Instance();
_target->Move(-_delta);
solver->SetMemento(_state); // restore solver state
solver->Solve();

}

Execute acquires a ConstraintSolverMemento memento before it moves the
graphic. Unexecute moves the graphic back, sets the constraint solver's state to
the previous state, and finally tells the constraint solver to solve the constraints.

Known Uses
The preceding sample code is based on Unidraw's support for connectivity
through its CSolver class [VL90].

Collections in Dylan [App92] provide an iteration interface that reflects the Me
mento pattern. Dylan's collections have the notion of a "state" object, which is a
memento that represents the state of the iteration. Each collection can represent
the current state of the iteration in any way it chooses; the representation is com
pletely hidden from clients. The Dylan iteration approach might be translated to
C++ as follows:

290 BEHAVIORAL PATTERNS CHAPTER 5

template <class Item>
class Collection {
public:

Collection();

IterationState* CreatelnitialState();
void Next(IterationState*);
bool IsDone(const IterationState*) const;
Item CurrentItern(const IterationState*) const;
IterationState* Copy(const IterationState*) const;

void Append(const Item&);
void Remove(const Item&);
I I . . .

} ;

CreatelnitialState returns an initialized IterationState object for the
collection. Next advances the state object to the next position in the iteration;
it effectively increments the iteration index. Is Done returns true if Next has
advanced beyond the last element in the collection. Current Item dereferences
the state object and returns the element in the collection to which it refers. Copy
returns a copy of the given state object. This is useful for marking a point in an
iteration.

Given a class ItemType, we can iterate over a collection of its instances as
follows7:

class ItemType {
public:

void Process();
I I . . .

} ;

Collection<ItemType*> aCollection;
IterationState* state;

state = aCollection.CreatelnitialState();

while (laCollection.IsDone(state)) {
aCollection.Currentltem(state)->Process();
aCollection.Next(state);

}
delete state;

The memento-based iteration interface has two interesting benefits:

1. More than one state can work on the same collection. (The same is true of the
Iterator (257) pattern.)

7 Note that our example deletes the state object at the end of the iteration. But delete won't get called if
Processltem throws an exception, thus creating garbage. This is a problem in C++ but not in Dylan, which
has garbage collection. We discuss a solution to this problem on page 266.

MEMENTO 291

2. It doesn't require breaking a collection's encapsulation to support iteration.
The memento is only interpreted by the collection itself; no one else has access
to it. Other approaches to iteration require breaking encapsulation by making
iterator classes friends of their collection classes (see Iterator (257)). The
situation is reversed in the memento-based implementation: Collection
is a friend of the IteratorState.

The QOCA constraint-solving toolkit stores incremental information in memen
tos [HHMV92]. Clients can obtain a memento that characterizes the current so
lution to a system of constraints. The memento contains only those constraint
variables that have changed since the last solution. Usually only a small subset
of the solver's variables changes for each new solution. This subset is enough
to return the solver to the preceding solution; reverting to earlier solutions re
quires restoring mementos from the intervening solutions. Hence you can't set
mementos in any order; QOCA relies on a history mechanism to revert to earlier
solutions.

Related Patterns
Command (233): Commands can use mementos to maintain state for undoable
operations.

Iterator (257): Mementos can be used for iteration as described earlier.

OBSERVER 293

OBSERVER Object Behavioral

Intent
Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Also Known As
Dependents, Publish-Subscribe

Motivation
A common side-effect of partitioning a system into a collection of cooperating
classes is the need to maintain consistency between related objects. You don't
want to achieve consistency by making the classes tightly coupled, because that
reduces their reusability.

For example, many graphical user interface toolkits separate the presentational
aspects of the user interface from the underlying application data [KP88, LVC89,
P+ 88, WGM88]. Classes defining application data and presentations can be reused
independently. They can work together, too. Both a spreadsheet object and bar
chart object can depict information in the same application data object using
different presentations. The spreadsheet and the bar chart don't know about each
other, thereby letting you reuse only the one you need. But they behave as though
they do. When the user changes the information in the spreadsheet, the bar chart
reflects the changes immediately, and vice versa.

observers

• a b 1 c 1 n 6 0] 30 | 10 |
KH-JIBCIK-;.!
LLI 80 1 10 I 10 1

change notification

requests, modifications

subject

294 BEHAVIORAL PATTERNS CHAPTER 5

This behavior implies that the spreadsheet and bar chart are dependent on the
data object and therefore should be notified of any change in its state. And there's
no reason to limit the number of dependent objects to two; there may be any
number of different user interfaces to the same data.

The Observer pattern describes how to establish these relationships. The key
objects in this pattern are subject and observer. A subject may have any number
of dependent observers. All observers are notified whenever the subject undergoes
a change in state. In response, each observer will query the subject to synchronize
its state with the subject's state.

This kind of interaction is also known as publish-subscribe. The subject is the
publisher of notifications. It sends out these notifications without having to know
who its observers are. Any number of observers can subscribe to receive notifica
tions.

Applicability
Use the Observer pattern in any of the following situations:

• When an abstraction has two aspects, one dependent on the other. Encapsu
lating these aspects in separate objects lets you vary and reuse them inde
pendently.

• When a change to one object requires changing others, and you don't know
how many objects need to be changed.

• When an object should be able to notify other objects without making as
sumptions about who these objects are. In other words, you don't want these
objects tightly coupled.

Structure

OBSERVER 295

Participants
• Subject

- knows its observers. Any number of Observer objects may observe a sub
ject.

- provides an interface for attaching and detaching Observer objects.

• Observer

- defines an updating interface for objects that should be notified of changes
in a subject.

• ConcreteSubject

- stores state of interest to ConcreteObserver objects.

- sends a notification to its observers when its state changes.

• ConcreteObserver

- maintains a reference to a ConcreteSubject object.

- stores state that should stay consistent with the subject's.

- implements the Observer updating interface to keep its state consistent
with the subject's.

Collaborations
• ConcreteSubject notifies its observers whenever a change occurs that could

make its observers' state inconsistent with its own.
• After being informed of a change in the concrete subject, a ConcreteObserver

object may query the subject for information. ConcreteObserver uses this in
formation to reconcile its state with that of the subject.
The following interaction diagram illustrates the collaborations between a
subject and two observers:

aConcreteSubject

X
aConcreteObserver anotherConcreteObserver

SetStateQ r'"

NotifyQ

UpdateO

GetStateQ

UpdateO

GetStateQ

T T

296 BEHAVIORAL PATTERNS CHAPTER 5

Note how the Observer object that initiates the change request postpones
its update until it gets a notification from the subject. Notify is not always
performed by an observer. It can be performed by the subject or by some other
object entirely. The Implementation section discusses some common variations.

Consequences
The Observer pattern lets you vary subjects and observers independently. You
can reuse subjects without reusing their observers, and vice versa. It lets you add
observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All a subject knows is that it
has a list of observers, each conforming to the simple interface of the abstract
Observer class. The subject doesn't know the concrete class of any observer.
Thus the coupling between subjects and observers is abstract and minimal.
Because Subject and Observer aren't tightly coupled, they can belong to
different layers of abstraction in a system. A lower-level subject can com
municate and inform a higher-level observer, thereby keeping the system's
layering intact. If Subject and Observer are lumped together, then the result
ing object must either span two layers (and violate the layering), or it must be
forced to live in one layer or the other (which might compromise the layering
abstraction).

2. Support for broadcast communication. Unlike an ordinary request, the notifi
cation that a subject sends needn't specify its receiver. The notification is
broadcast automatically to all interested objects that subscribed to it. The
subject doesn't care how many interested objects exist; its only responsibil
ity is to notify its observers. This gives you the freedom to add and remove
observers at any time. It's up to the observer to handle or ignore a notification.

3. Unexpected updates. Because observers have no knowledge of each other's
presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation on the subject may cause a cascade of updates
to observers and their dependent objects. Moreover, dependency criteria that
aren't well-defined or maintained usually lead to spurious updates, which
can be hard to track down.

This problem is aggravated by the fact that the simple update protocol pro
vides no details on what changed in the subject. Without additional protocol
to help observers discover what changed, they may be forced to work hard
to deduce the changes.

Implementation
Several issues related to the implementation of the dependency mechanism are
discussed in this section.

OBSERVER 297

1. Mapping subjects to their observers. The simplest way for a subject to keep
track of the observers it should notify is to store references to them explicitly
in the subject. However, such storage may be too expensive when there are
many subjects and few observers. One solution is to trade space for time by
using an associative look-up (e.g., a hash table) to maintain the subject-to-
observer mapping. Thus a subject with no observers does not incur storage
overhead. On the other hand, this approach increases the cost of accessing
the observers.

2. Observing more than one subject. It might make sense in some situations for
an observer to depend on more than one subject. For example, a spreadsheet
may depend on more than one data source. It's necessary to extend the
Update interface in such cases to let the observer know which subject is
sending the notification. The subject can simply pass itself as a parameter
in the Update operation, thereby letting the observer know which subject to
examine.

3. Who triggers the update? The subject and its observers rely on the notification
mechanism to stay consistent. But what object actually calls Notify to trigger
the update? Here are two options:

(a) Have state-setting operations on Subject call Notify after they change
the subject's state. The advantage of this approach is that clients don't
have to remember to call Notify on the subject. The disadvantage is that
several consecutive operations will cause several consecutive updates,
which may be inefficient.

(b) Make clients responsible for calling Notify at the right time. The advan
tage here is that the client can wait to trigger the update until after a series
of state changes has been made, thereby avoiding needless intermediate
updates. The disadvantage is that clients have an added responsibility
to trigger the update. That makes errors more likely, since clients might
forget to call Notify.

4. Dangling references to deleted subjects. Deleting a subject should not produce
dangling references in its observers. One way to avoid dangling references
is to make the subject notify its observers as it is deleted so that they can
reset their reference to it. In general, simply deleting the observers is not an
option, because other objects may reference them, or they may be observing
other subjects as well.

5. Making sure Subject state is self-consistent before notification. It's important to
make sure Subject state is self-consistent before calling Notify, because ob
servers query the subject for its current state in the course of updating their
own state.

This self-consistency rule is easy to violate unintentionally when Subject
subclass operations call inherited operations. For example, the notification in

BEHAVIORAL PATTERNS CHAPTER 5

the following code sequence is trigged when the subject is in an inconsistent
state:

void MySubject::Operation (int newValue) {
BaseClassSubject::Operation(newValue);

// trigger notification

_myInstVar += newValue;
// update subclass state (too late!)

}

You can avoid this pitfall by sending notifications from template methods
(Template Method (325)) in abstract Subject classes. Define primitive oper
ation for subclasses to override, and make Notify the last operation in the
template method, which will ensure that the object is self-consistent when
subclasses override Subject operations.

void Text::Cut (TextRange r) {
ReplaceRange(r); // redefined in subclasses
Notify();

}

By the way, it's always a good idea to document which Subject operations
trigger notifications.

6. Avoiding observer-specific update protocols: the push and pull models. Implemen
tations of the Observer pattern often have the subject broadcast additional
information about the change. The subject passes this information as an
argument to Update. The amount of information may vary widely.
At one extreme, which we call the push model, the subject sends observers
detailed information about the change, whether they want it or not. At the
other extreme is the pull model; the subject sends nothing but the most
minimal notification, and observers ask for details explicitly thereafter.
The pull model emphasizes the subject's ignorance of its observers, whereas
the push model assumes subjects know something about their observers'
needs. The push model might make observers less reusable, because Subject
classes make assumptions about Observer classes that might not always be
true. On the other hand, the pull model may be inefficient, because Observer
classes must ascertain what changed without help from the Subject.

7. Specifying modifications of interest explicitly. You can improve update efficiency
by extending the subject's registration interface to allow registering observers
only for specific events of interest. When such an event occurs, the subject in
forms only those observers that have registered interest in that event. Digitalk
Smalltalk supports this with the notion of aspects for Model (i.e., Subject)
objects. To register interest in particular events, View objects (i.e., observers)
send an

add: self interestln: anAspect

OBSERVER 299

message to their models, where anAspect specifies the event of interest. At
notification time, the subject supplies the changed aspect to its observers as
a parameter to the Update operation. For example:

observer update: theChangedAspect

8. Encapsulating complex update semantics. When the dependency relationship
between subjects and observers is particularly complex, an object that main
tains these relationships might be required. We call such an object a Change-
Manager. Its purpose is to minimize the work required to make observers
reflect a change in their subject. For example, if an operation involves changes
to several interdependent subjects, you might have to ensure that their ob
servers are notified only after all the subjects have been modified to avoid
notifying observers more than once.
ChangeManager has three responsibilities:

(a) It maps a subject to its observers and provides an interface to maintain
this mapping. This eliminates the need for subjects to maintain references
to their observers and vice versa.

(b) It defines a particular update strategy.

(c) It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeManager-based implemen
tation of the Observer pattern. There are two specialized ChangeManagers.
SimpleChangeManager is naive in that it always updates all observers of each
subject. In contrast, DAGChangeManager handles directed-acyclic graphs of
dependencies between subjects and their observers. A DAGChangeManager
is preferable to a SimpleChangeManager when an observer observes more
than one subject. In that case, a change in two or more subjects might cause
redundant updates. The DAGChangeManager ensures the observer receives
just one update. SimpleChangeManager is fine when multiple updates aren't
an issue.

300 BEHAVIORAL PATTERNS CHAPTER 5

ChangeManager is an instance of the Mediator (273) pattern. In general there
is only one ChangeManager, and it is known globally. The Singleton (127)
pattern would be useful here.

9. Combining the Subject and Observer classes. Class libraries written in languages
that lack multiple inheritance (like Smalltalk) generally don't define separate
Subject and Observer classes but combine their interfaces in one class. That
lets you define an object that acts as both a subject and an observer without
multiple inheritance. In Smalltalk, for example, the Subject and Observer
interfaces are defined in the root class Object, making them available to all
classes.

Sample Code
An abstract class defines the Observer interface:

class Subject;

class Observer {
public:

virtual "Observer();
virtual void Update(Subject* theChangedSubject) = 0;

protected:
Observer();

} ;

This implementation supports multiple subjects for each observer. The sub
ject passed to the Update operation lets the observer determine which subject
changed when it observes more than one.

Similarly, an abstract class defines the Subject interface:

OBSERVER 301

class Subject {
public:

virtual "Subject!) ;

virtual void Attach(Observer*);
virtual void Detach(Observer*);
virtual void NotifyO;

protected:
Subj ect();

private:
List<Observer*> *_observers;

} ;

void Subject::Attach (Observer* o) {
_observers->Append(o);

)

void Subject::Detach (Observer* o) {
_observers->Remove(o);

)

void Subject::Notify () {
ListIterator<Observer*> i(.observers);

for (i. First () ; !i.IsDone(); i.NextO) {
i.Currentltemf)->Update(this);

}
}

ClockTimer is a concrete subject for storing and maintaining the time of day.
It notifies its observers every second. ClockTimer provides the interface for
retrieving individual time units such as the hour, minute, and second.

class ClockTimer : public Subject {
public:

ClockTimer();

virtual int GetHour();
virtual int GetMinuteO;
virtual int GetSecondO;

void Tick();
};

The Tick operation gets called by an internal timer at regular intervals to provide
an accurate time base. Tick updates the ClockTimer's internal state and calls
Notify to inform observers of the change:

void ClockTimer::Tick () {
// update internal time-keeping state
II ...
Notify();

)

302 BEHAVIORAL PATTERNS CHAPTER 5

Now we can define a class DigitalClock that displays the time. It inherits its
graphical functionality from a Widget class provided by a user interface toolkit.
The Observer interface is mixed into the DigitalClock interface by inheriting
from Observer.

class DigitalClock: public Widget, public Observer {
public:

DigitalClock(ClockTimer*);
virtual "DigitalClock();

virtual void Update(Subject*);
// overrides Observer operation

virtual void Draw();
// overrides Widget operation;
// defines how to draw the digital clock

private:
ClockTimer* _subject;

};

DigitalClock::DigitalClock (ClockTimer* s) {
_subject = s;
_subject->Attach(this);

}

DigitalClock::"DigitalClock () {
_subject->Detach(this);

}

Before the Update operation draws the clock face, it checks to make sure the
notifying subject is the clock's subject:

void DigitalClock::Update (Subject* theChangedSubject) {
if (theChangedSubject == _subject) {

Draw();
}

}

void DigitalClock::Draw () {
// get the new values from the subject

int hour = _subject->GetHour();
int minute = _subject->GetMinute();
// etc.

// draw the digital clock
}

An AnalogClock class can be defined in the same way.

OBSERVER 303

class AnalogClock : public Widget, public Observer {
public:

AnalogClock(ClockTimer*);
virtual void Update(Subject*);
virtual void DrawO;
I I . . .

} ;

The following code creates an AnalogClock and a DigitalClock that always
show the same time:

ClockTimer* timer = new ClockTimer;
AnalogClock* analogClock = new AnalogClock(timer);
DigitalClock* digitalClock = new DigitalClock(timer);

Whenever the timer ticks, the two clocks will be updated and will redisplay
themselves appropriately.

Known Uses
The first and perhaps best-known example of the Observer pattern appears in
Smalltalk Model/View/Controller (MVC), the user interface framework in the
Smalltalk environment [KP88]. MVC's Model class plays the role of Subject, while
View is the base class for observers. Smalltalk, ET++ [WGM88], and the THINK
class library [Sym93b] provide a general dependency mechanism by putting Sub
ject and Observer interfaces in the parent class for all other classes in the system.

Other user interface toolkits that employ this pattern are Interviews [LVC89],
the Andrew Toolkit [P+88], and Unidraw [VL90]. Interviews defines Observer
and Observable (for subjects) classes explicitly. Andrew calls them "view" and
"data object," respectively. Unidraw splits graphical editor objects into View (for
observers) and Subject parts.

Related Patterns
Mediator (273): By encapsulating complex update semantics, the ChangeManager
acts as mediator between subjects and observers.

Singleton (127): The ChangeManager may use the Singleton pattern to make it
unique and globally accessible.

STATE 305

Object Behavioral

Intent
Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class.

Also Known As
Objects for States

Motivation
Consider a class TCPConnection that represents a network connection. A TCP-
Connection object can be in one of several different states: Established, Listening,
Closed. When a TCPConnection object receives requests from other objects, it
responds differently depending on its current state. For example, the effect of an
Open request depends on whether the connection is in its Closed state or its Estab
lished state. The State pattern describes how TCPConnection can exhibit different
behavior in each state.

The key idea in this pattern is to introduce an abstract class called TCPState
to represent the states of the network connection. The TCPState class declares
an interface common to all classes that represent different operational states.
Subclasses of TCPState implement state-specific behavior. For example, the classes
TCPEstablished and TCPClosed implement behavior particular to the Established
and Closed states of TCPConnection.

The class TCPConnection maintains a state object (an instance of a subclass of
TCPState) that represents the current state of the TCP connection. The class TCP-

STATE

306 BEHAVIORAL PATTERNS CHAPTER 5

Connection delegates all state-specific requests to this state object. TCPConnection
uses its TCPState subclass instance to perform operations particular to the state
of the connection.

Whenever the connection changes state, the TCPConnection object changes the
state object it uses. When the connection goes from established to closed, for exam
ple, TCPConnection will replace its TCPEstablished instance with a TCPClosed
instance.

Applicability
Use the State pattern in either of the following cases:

• An object's behavior depends on its state, and it must change its behavior at
run-time depending on that state.

• Operations have large, multipart conditional statements that depend on the
object's state. This state is usually represented by one or more enumerated
constants. Often, several operations will contain this same conditional struc
ture. The State pattern puts each branch of the conditional in a separate class.
This lets you treat the object's state as an object in its own right that can vary
independently from other objects.

Structure

Participants
• Context (TCPConnection)

- defines the interface of interest to clients.

- maintains an instance of a ConcreteState subclass that defines the current
state.

• State (TCPState)

- defines an interface for encapsulating the behavior associated with a par
ticular state of the Context.

STATE 307

• ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

- each subclass implements a behavior associated with a state of the Context.

Collaborations
• Context delegates state-specific requests to the current ConcreteState object.
• A context may pass itself as an argument to the State object handling the

request. This lets the State object access the context if necessary.
• Context is the primary interface for clients. Clients can configure a context with

State objects. Once a context is configured, its clients don't have to deal with
the State objects directly.

• Either Context or the ConcreteState subclasses can decide which state succeeds
another and under what circumstances.

Consequences
The State pattern has the following consequences:

1. It localizes state-specific behavior and partitions behavior for different states. The
State pattern puts all behavior associated with a particular state into one
object. Because all state-specific code lives in a State subclass, new states and
transitions can be added easily by defining new subclasses.
An alternative is to use data values to define internal states and have Con
text operations check the data explicitly. But then we'd have look-alike con
ditional or case statements scattered throughout Context's implementation.
Adding a new state could require changing several operations, which com
plicates maintenance.

The State pattern avoids this problem but might introduce another, because
the pattern distributes behavior for different states across several State sub
classes. This increases the number of classes and is less compact than a single
class. But such distribution is actually good if there are many states, which
would otherwise necessitate large conditional statements.
Like long procedures, large conditional statements are undesirable. They're
monolithic and tend to make the code less explicit, which in turn makes
them difficult to modify and extend. The State pattern offers a better way to
structure state-specific code. The logic that determines the state transitions
doesn't reside in monolithic if or switch statements but instead is parti
tioned between the State subclasses. Encapsulating each state transition and
action in a class elevates the idea of an execution state to full object status.
That imposes structure on the code and makes its intent clearer.

2. It makes state transitions explicit. When an object defines its current state solely
in terms of internal data values, its state transitions have no explicit repre
sentation; they only show up as assignments to some variables. Introduc
ing separate objects for different states makes the transitions more explicit.

308 BEHAVIORAL PATTERNS CHAPTER 5

Also, State objects can protect the Context from inconsistent internal states,
because state transitions are atomic from the Context's perspective—they
happen by rebinding one variable (the Context's State object variable), not
several [dCLF93].

3. State objects can be shared. If State objects have no instance variables—that is,
the state they represent is encoded entirely in their type—then contexts can
share a State object. When states are shared in this way, they are essentially
flyweights (see Flyweight (195)) with no intrinsic state, only behavior.

Implementation
The State pattern raises a variety of implementation issues:

1. Who defines the state transitions? The State pattern does not specify which
participant defines the criteria for state transitions. If the criteria are fixed,
then they can be implemented entirely in the Context. It is generally more
flexible and appropriate, however, to let the State subclasses themselves
specify their successor state and when to make the transition. This requires
adding an interface to the Context that lets State objects set the Context's
current state explicitly.
Decentralizing the transition logic in this way makes it easy to modify or
extend the logic by defining new State subclasses. A disadvantage of de
centralization is that one State subclass will have knowledge of at least one
other, which introduces implementation dependencies between subclasses.

2. A table-based alternative. In C++ Programming Style [Car92], Cargill describes
another way to impose structure on state-driven code: He uses tables to map
inputs to state transitions. For each state, a table maps every possible input
to a succeeding state. In effect, this approach converts conditional code (and
virtual functions, in the case of the State pattern) into a table look-up.
The main advantage of tables is their regularity: You can change the transition
criteria by modifying data instead of changing program code. There are some
disadvantages, however:

• A table look-up is often less efficient than a (virtual) function call.

• Putting transition logic into a uniform, tabular format makes the transi
tion criteria less explicit and therefore harder to understand.

• It's usually difficult to add actions to accompany the state transitions.
The table-driven approach captures the states and their transitions, but it
must be augmented to perform arbitrary computation on each transition.

The key difference between table-driven state machines and the State pattern
can be summed up like this: The State pattern models state-specific behavior,
whereas the table-driven approach focuses on defining state transitions.

STATE 309

3. Creating and destroying State objects. A common implementation trade-off
worth considering is whether (1) to create State objects only when they are
needed and destroy them thereafter versus (2) creating them ahead of time
and never destroying them.

The first choice is preferable when the states that will be entered aren't
known at run-time, and contexts change state infrequently. This approach
avoids creating objects that won't be used, which is important if the State
objects store a lot of information. The second approach is better when state
changes occur rapidly, in which case you want to avoid destroying states,
because they may be needed again shortly. Instantiation costs are paid once
up-front, and there are no destruction costs at all. This approach might be
inconvenient, though, because the Context must keep references to all states
that might be entered.

4. Using dynamic inheritance. Changing the behavior for a particular request
could be accomplished by changing the object's class at run-time, but this
is not possible in most object-oriented programming languages. Exceptions
include Self IUS87] and other delegation-based languages that provide such
a mechanism and hence support the State pattern directly. Objects in Self
can delegate operations to other objects to achieve a form of dynamic inher
itance. Changing the delegation target at run-time effectively changes the
inheritance structure. This mechanism lets objects change their behavior and
amounts to changing their class.

Sample Code
The following example gives the C++ code for the TCP connection example de
scribed in the Motivation section. This example is a simplified version of the
TCP protocol; it doesn't describe the complete protocol or all the states of TCP
connections.8

First, we define the class TCPConnect ion, which provides an interface for trans
mitting data and handles requests to change state.

class TCPOctetStream;
class TCPState;

class TCPConnection {
public:

TCPConnection () ;

void ActiveOpen();
void PassiveOpen();
void Close();

8This example is based on the TCP connection protocol described by Lynch and Rose [LR93J.

310 BEHAVIORAL PATTERNS CHAPTER 5

void Send();
void Acknowledge();
void Synchronize();

void ProcessOctet(TCPOctetStream*);
private:

friend class TCPState;
void ChangeState(TCPState*);

private:
TCPState* _state;

} ;

TCPConnection keeps an instance of the TCPState class in the .state mem
ber variable. The class TCPState duplicates the state-changing interface of
TCPConnection. Each TCPState operation takes a TCPConnection instance
as a parameter, letting TCPState access data from TCPConnection and change
the connection's state.

class TCPState {
public:

virtual void Transmit(TCPConnection*, TCPOctetStream*);
virtual void ActiveOpen(TCPConnection*);
virtual void PassiveOpen(TCPConnection*);
virtual void Close(TCPConnection*);
virtual void Synchronize(TCPConnection*);
virtual void Acknowledge(TCPConnection*);
virtual void Send(TCPConnection*);

protected:
void ChangeState(TCPConnection*, TCPState*);

>;

TCPConnection delegates all state-specific requests to its TCPState instance
.state. TCPConnection also provides an operation for changing this variable
to a new TCPState. The constructor for TCPConnection initializes the object to
the TCPClosed state (defined later).

TCPConnection::TCPConnection () {
_state = TCPClosed::Instance();

}

void TCPConnection::ChangeState (TCPState* s) {
_state = s;

}

void TCPConnection::ActiveOpen () {
_state->ActiveOpen(this);

}

void TCPConnection::PassiveOpen () {
_state->PassiveOpen(this);

}

STATE 311

void TCPConnection::Close () {
_state->Close(this);

}

void TCPConnection::Acknowledge () {
_state->Acknowledge(this);

}

void TCPConnection::Synchronize () {
_state->Synchronize(this);

)

TCPState implements default behavior for all requests delegated to it. It can
also change the state of a TCPConnection with the ChangeState operation.
TCPState is declared a friend of TCPConnection to give it privileged access to
this operation.

void TCPState::Transmit (TCPConnection*, TCPOctetStream*) {• }
void TCPState::ActiveOpen (TCPConnection*) { }
void TCPState::PassiveOpen (TCPConnection*) { }
void TCPState::Close (TCPConnection*) {)
void TCPState:Synchronize (TCPConnection*) { }

void TCPState::ChangeState (TCPConnection* t, TCPState* s) {
t->ChangeState(s);

}

Subclasses of TCPState implement state-specific behavior. A TCP connec
tion can be in many states: Established, Listening, Closed, etc., and there's a
subclass of TCPState for each state. We'll discuss three subclasses in detail:
TCPEstablished, TCPListen, and TCPClosed.

class TCPEstablished : public TCPState {
public:

static TCPState* Instance();

virtual void Transmit(TCPConnection*, TCPOctetStream*);
virtual void Close(TCPConnection*);

} ;

class TCPListen : public TCPState {
public:

static TCPState* Instance();

virtual void Send(TCPConnection*);
II ...

312 BEHAVIORAL PATTERNS CHAPTER 5

class TCPClosed : public TCPState {
public:

static TCPState* InstanceO;

virtual void ActiveOpen(TCPConnection*);
virtual void PassiveOpen(TCPConnection*);
II ...

} ;

TCPState subclasses maintain no local state, so they can be shared, and only one
instance of each is required. The unique instance of each TCPState subclass is
obtained by the static Instance operation.9

Each TCPState subclass implements state-specific behavior for valid requests in
the state:

void TCPClosed::ActiveOpen (TCPConnection* t) {
// send SYN, receive SYN, ACK, etc.

ChangeState(t, TCPEstablished::Instance());
}

void TCPClosed::PassiveOpen (TCPConnection* t) {
ChangeState(t, TCPListen::Instance());

}

void TCPEstablished::Close (TCPConnection* t) {
// send FIN, receive ACK of FIN

ChangeState(t, TCPListen: :InstanceO) ;
}

void TCPEstablished::Transmit (
TCPConnection* t, TCPOctetStream* o

) (

t->ProcessOctet(o);
}

void TCPListen::Send (TCPConnection* t) {
// send SYN, receive SYN, ACK, etc.

ChangeState (t, TCPEstablished: : InstanceO) ;
}

After performing state-specific work, these operations call the ChangeState
operation to change the state of the TCPConnection. TCPConnection itself
doesn't know a thing about the TCP connection protocol; it's the TCPState
subclasses that define each state transition and action in TCP.

9This makes each TCPState subclass a Singleton (see Singleton (127)).

STATE 313

Known Uses
Johnson and Zweig [JZ91] characterize the State pattern and its application to TCP
connection protocols.

Most popular interactive drawing programs provide "tools" for performing op
erations by direct manipulation. For example, a line-drawing tool lets a user click
and drag to create a new line. A selection tool lets the user select shapes. There's
usually a palette of such tools to choose from. The user thinks of this activity as
picking up a tool and wielding it, but in reality the editor's behavior changes
with the current tool: When a drawing tool is active we create shapes; when the
selection tool is active we select shapes; and so forth. We can use the State pattern
to change the editor's behavior depending on the current tool.

We can define an abstract Tool class from which to define subclasses that imple
ment tool-specific behavior. The drawing editor maintains a current Tool object
and delegates requests to it. It replaces this object when the user chooses a new
tool, causing the behavior of the drawing editor to change accordingly.

This technique is used in both the HotDraw [Joh921 and Unidraw [VL90] drawing
editor frameworks. It allows clients to define new kinds of tools easily. In HotDraw,
the DrawingController class forwards the requests to the current Tool object. In
Unidraw, the corresponding classes are Viewer and Tool. The following class
diagram sketches the Tool and DrawingController interfaces:

Coplien s Envelope-Letter idiom [Cop92] is related to State. Envelope-Letter is
a technique for changing an object's class at run-time. The State pattern is more
specific, focusing on how to deal with an object whose behavior depends on its
state.

Related Patterns
The Flyweight pattern (195) explains when and how State objects can be shared.
State objects are often Singletons (127).

STRATEGY 315

STRATEGY Object Behavioral

Intent
Define a family of algorithms, encapsulate each one, and make them interchange
able. Strategy lets the algorithm vary independently from clients that use it.

Also Known As
Policy

Motivation
Many algorithms exist for breaking a stream of text into lines. Hard-wiring all such
algorithms into the classes that require them isn't desirable for several reasons:

• Clients that need linebreaking get more complex if they include the line-
breaking code. That makes clients bigger and harder to maintain, especially
if they support multiple linebreaking algorithms.

• Different algorithms will be appropriate at different times. We don't want to
support multiple linebreaking algorithms if we don't use them all.

• It's difficult to add new algorithms and vary existing ones when linebreaking
is an integral part of a client.

We can avoid these problems by defining classes that encapsulate different line-
breaking algorithms. An algorithm that's encapsulated in this way is called a
strategy.

Suppose a Composition class is responsible for maintaining and updating the
linebreaks of text displayed in a text viewer. Linebreaking strategies aren't im
plemented by the class Composition. Instead, they are implemented separately
by subclasses of the abstract Compositor class. Compositor subclasses implement
different strategies:

316 BEHAVIORAL PATTERNS CHAPTER 5

• SimpleCompositor implements a simple strategy that determines linebreaks
one at a time.

• TeXCompositor implements the TpX algorithm for finding linebreaks. This
strategy tries to optimize linebreaks globally, that is, one paragraph at a time.

• ArrayCompositor implements a strategy that selects breaks so that each row
has a fixed number of items. It's useful for breaking a collection of icons into
rows, for example.

A Composition maintains a reference to a Compositor object. Whenever a Compo
sition reformats its text, it forwards this responsibility to its Compositor object. The
client of Composition specifies which Compositor should be used by installing
the Compositor it desires into the Composition.

Applicability
Use the Strategy pattern when

• many related classes differ only in their behavior. Strategies provide a way
to configure a class with one of many behaviors.

• you need different variants of an algorithm. For example, you might de
fine algorithms reflecting different space/time trade-offs. Strategies can be
used when these variants are implemented as a class hierarchy of algo
rithms [H087].

• an algorithm uses data that clients shouldn't know about. Use the Strategy
pattern to avoid exposing complex, algorithm-specific data structures.

• a class defines many behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals, move related
conditional branches into their own Strategy class.

Structure

STRATEGY 317

Participants
• Strategy (Compositor)

- declares an interface common to all supported algorithms. Context uses
this interface to call the algorithm defined by a ConcreteStrategy.

• ConcreteStrategy (SimpleCompositor, TeXCompositor, ArrayCompositor)

- implements the algorithm using the Strategy interface.

• Context (Composition)

- is configured with a ConcreteStrategy object.

- maintains a reference to a Strategy object.

- may define an interface that lets Strategy access its data.

Collaborations
• Strategy and Context interact to implement the chosen algorithm. A context

may pass all data required by the algorithm to the strategy when the algorithm
is called. Alternatively, the context can pass itself as an argument to Strategy
operations. That lets the strategy call back on the context as required.

• A context forwards requests from its clients to its strategy. Clients usually
create and pass a ConcreteStrategy object to the context; thereafter, clients
interact with the context exclusively. There is often a family of ConcreteStrategy
classes for a client to choose from.

Consequences
The Strategy pattern has the following benefits and drawbacks:

1. Families of related algorithms. Hierarchies of Strategy classes define a family of
algorithms or behaviors for contexts to reuse. Inheritance can help factor out
common functionality of the algorithms.

2. An alternative to subclassing. Inheritance offers another way to support a
variety of algorithms or behaviors. You can subclass a Context class directly
to give it different behaviors. But this hard-wires the behavior into Context. It
mixes the algorithm implementation with Context's, making Context harder
to understand, maintain, and extend. And you can't vary the algorithm
dynamically. You wind up with many related classes whose only difference
is the algorithm or behavior they employ. Encapsulating the algorithm in
separate Strategy classes lets you vary the algorithm independently of its
context, making it easier to switch, understand, and extend.

3. Strategies eliminate conditional statements. The Strategy pattern offers an alter
native to conditional statements for selecting desired behavior. When differ
ent behaviors are lumped into one class, it's hard to avoid using conditional

318 BEHAVIORAL PATTERNS CHAPTER 5

statements to select the right behavior. Encapsulating the behavior in sepa
rate Strategy classes eliminates these conditional statements.
For example, without strategies, the code for breaking text into lines could
look like

void Composition::Repair () {
switch (_breakingStrategy) {
case SimpleStrategy:

ComposeWithSimpleCompositor();
break;

case TeXStrategy:
ComposeWithTeXCompositor();
break;

I I . . .
}
II merge results with existing composition, if necessary

}

The Strategy pattern eliminates this case statement by delegating the line-
breaking task to a Strategy object:

void Composition::Repair () {
_compositor->Compose();
// merge results with existing composition, if necessary

}

Code containing many conditional statements often indicates the need to
apply the Strategy pattern.

4. A choice of implementations. Strategies can provide different implementations
of the same behavior. The client can choose among strategies with different
time and space trade-offs.

5. Clients must be aware of different Strategies. The pattern has a potential draw
back in that a client must understand how Strategies differ before it can
select the appropriate one. Clients might be exposed to implementation is
sues. Therefore you should use the Strategy pattern only when the variation
in behavior is relevant to clients.

6. Communication overhead between Strategy and Context. The Strategy interface
is shared by all ConcreteStrategy classes whether the algorithms they imple
ment are trivial or complex. Hence it's likely that some ConcreteStrategies
won't use all the information passed to them through this interface; simple
ConcreteStrategies may use none of it! That means there will be times when
the context creates and initializes parameters that never get used. If this is
an issue, then you'll need tighter coupling between Strategy and Context.

7. Increased number of objects. Strategies increase the number of objects in an
application. Sometimes you can reduce this overhead by implementing
strategies as stateless objects that contexts can share. Any residual state is
maintained by the context, which passes it in each request to the Strategy

STRATEGY 319

object. Shared strategies should not maintain state across invocations. The
Flyweight (195) pattern describes this approach in more detail.

Implementation
Consider the following implementation issues:

1. Defining the Strategy and Context interfaces. The Strategy and Context interfaces
must give a ConcreteStrategy efficient access to any data it needs from a
context, and vice versa.

One approach is to have Context pass data in parameters to Strategy
operations—in other words, take the data to the strategy. This keeps Strategy
and Context decoupled. On the other hand, Context might pass data the
Strategy doesn't need.

Another technique has a context pass itself as an argument, and the strategy
requests data from the context explicitly. Alternatively, the strategy can store
a reference to its context, eliminating the need to pass anything at all. Either
way, the strategy can request exactly what it needs. But now Context must
define a more elaborate interface to its data, which couples Strategy and
Context more closely.

The needs of the particular algorithm and its data requirements will deter
mine the best technique.

2. Strategies as template parameters. In C++ templates can be used to configure
a class with a strategy. This technique is only applicable if (1) the Strategy
can be selected at compile-time, and (2) it does not have to be changed at
run-time. In this case, the class to be configured (e.g., Context) is defined
as a template class that has a Strategy class as a parameter:

template cclass AStrategy>
class Context {

void Operation!) { theStrategy.DoAlgorithm{); }
I I . . .

private:
AStrategy theStrategy;

} ;

The class is then configured with a Strategy class when it's instantiated:

class MyStrategy {
public:

void DoAlgorithm();
} ;

Context<MyStrategy> aContext;

With templates, there's no need to define an abstract class that defines the
interface to the Strategy. Using Strategy as a template parameter also
lets you bind a Strategy to its Context statically, which can increase
efficiency.

320 BEHAVIORAL PATTERNS CHAPTER 5

3. Making Strategy objects optional. The Context class may be simplified if it's
meaningful not to have a Strategy object. Context checks to see if it has
a Strategy object before accessing it. If there is one, then Context uses it
normally. If there isn't a strategy, then Context carries out default behavior.
The benefit of this approach is that clients don't have to deal with Strategy
objects at all unless they don't like the default behavior.

Sample Code
We'll give the high-level code for the Motivation example, which is based on the
implementation of Composition and Compositor classes in Interviews [LCI+92].

The Composition class maintains a collection of Component instances, which
represent text and graphical elements in a document. A composition arranges
component objects into lines using an instance of a Compositor subclass, which
encapsulates a linebreaking strategy. Each component has an associated natural
size, stretchability, and shrinkability. The stretchability defines how much the
component can grow beyond its natural size; shrinkability is how much it can
shrink. The composition passes these values to a compositor, which uses them to
determine the best location for linebreaks.

class Composition {
public:

Composition(Compositor*);
void Repair();

private:
Compositor* _compositor;
Component* _components;
int _componentCount;
int _lineWidth;
int* _lineBreaks;

int _lineCount;
} ;

// the list of components
// the number of components
II the Composition's line width
// the position of linebreaks
// in components
// the number of lines

When a new layout is required, the composition asks its compositor to determine
where to place linebreaks. The composition passes the compositor three arrays
that define natural sizes, stretchabilities, and shrinkabilities of the components. It
also passes the number of components, how wide the line is, and an array that
the compositor fills with the position of each linebreak. The compositor returns
the number of calculated breaks.

The Compositor interface lets the composition pass the compositor all the infor
mation it needs. This is an example of "taking the data to the strategy":

STRATEGY 321

class Compositor {
public:

virtual int Compose(

Coord natural!]. Coord stretch[], Coord shrink!],
int componentCount, int lineWidth, int breaks[]

) = 0;
protected:

Compositor();
} ;

Note that Compositor is an abstract class. Concrete subclasses define specific
linebreaking strategies.

The composition calls its compositor in its Repair operation. Repair first initial
izes arrays with the natural size, stretchability, and shrinkability of each compo
nent (the details of which we omit for brevity). Then it calls on the compositor to
obtain the linebreaks and finally lays out the components according to the breaks
(also omitted):

void Composition::Repair () {
Coord* natural;
Coord* stretchability;
Coord* shrinkability;
int componentCount;
int* breaks;

// prepare the arrays with the desired component sizes
I I . . .

II determine where the breaks are:
int breakCount;
breakCount = _compositor->Compose(

natural, stretchability, shrinkability,
componentCount, _lineWidth, breaks

);

// lay out components according to breaks
I I . . .

}

Now let s look at the Compositor subclasses. SimpleCompositor examines
components a line at a time to determine where breaks should go:

class SimpleCompositor : public Compositor {
public:

SimpleCompositor]);

virtual int Compose]
Coord naturalf], Coord stretch!]. Coord shrink!],
int componentCount, int lineWidth, int breaks!]

) ;
II ...

};

322 BEHAVIORAL PATTERNS CHAPTER 5

TeXCompositor uses a more global strategy. It examines a paragraph at a time,
taking into account the components' size and stretchability. It also tries to give
an even "color" to the paragraph by minimizing the whitespace between compo
nents.

class TeXCompositor : public Compositor {
public:

TeXCompositor();

virtual int Compose(
Coord natural[], Coord stretch[], Coord shrink[],
int componentCount, int lineWidth, int breaks[]

) ;

I I . . .
} ;

ArrayCompositor breaks the components into lines at regular intervals.

class ArrayCompositor : public Compositor {
public:

ArrayCompositor(int interval);

virtual int Compose(
Coord natural!], Coord stretch!], Coord shrink!],
int componentCount, int lineWidth, int breaks!]

) ;

I I . . .
} ;

These classes don't use all the information passed in Compose. SimpleCom-
positor ignores the stretchability of the components, taking only their nat
ural widths into account. TeXCompositor uses all the information passed to it,
whereas ArrayCompositor ignores everything.

To instantiate Composition, you pass it the compositor you want to use:

Composition* quick = new Composition(new SimpleCompositor) ;
Composition* slick = new Composition(new TeXCompositor);
Composition* iconic = new Composition(new ArrayCompositor(100)) ;

Compositor's interface is carefully designed to support all layout algorithms
that subclasses might implement. You don't want to have to change this interface
with every new subclass, because that will require changing existing subclasses.
In general, the Strategy and Context interfaces determine how well the pattern
achieves its intent.

Known Uses
Both ET++ [WGM88] and Interviews use strategies to encapsulate different line-
breaking algorithms as we've described.

STRATEGY 323

In the RTL System for compiler code optimization [JML92], strategies define differ
ent register allocation schemes (RegisterAllocator) and instruction set scheduling
policies (RISCscheduler, CISCscheduler). This provides flexibility in targeting the
optimizer for different machine architectures.

The ET++SwapsManager calculation engine framework computes prices for dif
ferent financial instruments [EG92]. Its key abstractions are Instrument and Yield-
Curve. Different instruments are implemented as subclasses of Instrument. The
YieldCurve calculates discount factors to present value of future cash flows. Both
of these classes delegate some behavior to Strategy objects. The framework pro
vides a family of ConcreteStrategy classes for generating cash flows, valuing
swaps, and calculating discount factors. You can create new calculation engines
by configuring Instrument and YieldCurve with the different ConcreteStrategy
objects. This approach supports mixing and matching existing Strategy imple
mentations as well as defining new ones.

The Booch components [BV901 use strategies as template arguments. The Booch
collection classes support three different kinds of memory allocation strategies:
managed (allocation out of a pool), controlled (allocations/deallocations are pro
tected by locks), and unmanaged (the normal memory allocator). These strategies
are passed as template arguments to a collection class when it's instantiated. For
example, an UnboundedCollection that uses the unmanaged strategy is instanti
ated as UnboundedCollection<MyItemType*, Unmanaged>.

RApp is a system for integrated circuit layout [GA89, AG90]. RApp must lay out
and route wires that connect subsystems on the circuit. Routing algorithms in
RApp are defined as subclasses of an abstract Router class. Router is a Strategy
class.

Borland's ObjectWindows [Bor94] uses strategies in dialogs boxes to ensure that
the user enters valid data. For example, numbers might have to be in a certain
range, and a numeric entry field should accept only digits. Validating that a string
is correct can require a table look-up.

ObjectWindows uses Validator objects to encapsulate validation strategies. Val
idators are examples of Strategy objects. Data entry fields delegate the validation
strategy to an optional Validator object. The client attaches a validator to a field
if validation is required (an example of an optional strategy). When the dialog is
closed, the entry fields ask their validators to validate the data. The class library
provides validators for common cases, such as a Range Validator for numbers.
New client-specific validation strategies can be defined easily by subclassing the
Validator class.

Related Patterns
Flyweight (195): Strategy objects often make good flyweights.

TEMPLATE METHOD 325

TEMPLATE METHOD ciass Behavioral

Intent
Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

Motivation
Consider an application framework that provides Application and Document
classes. The Application class is responsible for opening existing documents stored
in an external format, such as a file. A Document object represents the information
in a document once it's read from the file.

Applications built with the framework can subclass Application and Document to
suit specific needs. For example, a drawing application defines Draw Application
and DrawDocument subclasses; a spreadsheet application defines Spreadsheet-
Application and SpreadsheetDocument subclasses.

The abstract Application class defines the algorithm for opening and reading a
document in its OpenDocument operation:

void Application::OpenDocument (const char* name) {
if (!CanOpenDocument(name)) {

// cannot handle this document
return;

}

326 BEHAVIORAL PATTERNS CHAPTER 5

Document* doc = DoCreateDocument();

if (doc) {
_docs->AddDocument(doc);
AboutToOpenDocument(doc);
doc->Open();
doc->DoRead();

}
}

OpenDocument defines each step for opening a document. It checks if the docu
ment can be opened, creates the application-specific Document object, adds it to
its set of documents, and reads the Document from a file.

We call OpenDocument a template method. A template method defines an algo
rithm in terms of abstract operations that subclasses override to provide concrete
behavior. Application subclasses define the steps of the algorithm that check if
the document can be opened (CanOpenDocument) and that create the Document
(DoCreateDocument). Document classes define the step that reads the document
(DoRead). The template method also defines an operation that lets Application
subclasses know when the document is about to be opened (AboutToOpenDocu
ment), in case they care.

By defining some of the steps of an algorithm using abstract operations, the tem
plate method fixes their ordering, but it lets Application and Document subclasses
vary those steps to suit their needs.

Applicability
The Template Method pattern should be used

• to implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behavior that can vary.

• when common behavior among subclasses should be factored and localized
in a common class to avoid code duplication. This is a good example of
"refactoring to generalize" as described by Opdyke and Johnson [OJ93],
You first identify the differences in the existing code and then separate the
differences into new operations. Finally, you replace the differing code with
a template method that calls one of these new operations.

• to control subclasses extensions. You can define a template method that calls
"hook" operations (see Consequences) at specific points, thereby permitting
extensions only at those points.

Structure

TEMPLATE METHOD 327

AbstractClass

TemplateMethod() o- -
PrimitiveOperation 1()
PrimitiveOperation2()

TemplateMethod() o- -
PrimitiveOperation 1()
PrimitiveOperation2()

PrimitiveOperation 1()

PrimitiveOperation2()

~
ConcreteClass

PrimitiveOperation1()
PrimiliveOperation2()

Participants
• AbstractClass (Application)

- defines abstract primitive operations that concrete subclasses define to
implement steps of an algorithm.

- implements a template method defining the skeleton of an algorithm. The
template method calls primitive operations as well as operations defined
in AbstractClass or those of other objects.

• ConcreteClass (MyApplication)

- implements the primitive operations to carry out subclass-specific steps of
the algorithm.

Collaborations
• ConcreteClass relies on AbstractClass to implement the invariant steps of the

algorithm.

Consequences
Template methods are a fundamental technique for code reuse. They are partic
ularly important in class libraries, because they are the means for factoring out
common behavior in library classes.

Template methods lead to an inverted control structure that's sometimes referred
to as "the Hollywood principle," that is, "Don't call us, we'll call you" [Swe85].
This refers to how a parent class calls the operations of a subclass and not the
other way around.

Template methods tend to call one of several kinds of operations:

• concrete operations (either on the ConcreteClass or on client classes);

328 BEHAVIORAL PATTERNS CHAPTER 5

• concrete AbstractClass operations (i.e., operations that are generally useful
to subclasses);

• primitive operations (i.e., abstract operations);

• factory methods (see Factory Method (107)); and

• hook operations, which provide default behavior that subclasses can extend
if necessary. A hook operation often does nothing by default.

It's important for template methods to specify which operations are hooks (may
be overridden) and which are abstract operations (must be overridden). To reuse
an abstract class effectively, subclass writers must understand which operations
are designed for overriding.

A subclass can extend a parent class operation's behavior by overriding the oper
ation and calling the parent operation explicitly:

void DerivedClass::Operation () {
// DerivedClass extended behavior
ParentClass::Operation();

}

Unfortunately, it's easy to forget to call the inherited operation. We can transform
such an operation into a template method to give the parent control over how
subclasses extend it. The idea is to call a hook operation from a template method
in the parent class. Then subclasses can then override this hook operation:

void ParentClass::Operation () {
// ParentClass behavior
HookOperation();

}

HookOperation does nothing in ParentClass:

void ParentClass::HookOperation () { }

Subclasses override HookOperation to extends its behavior:

void DerivedClass::HookOperation () {
// derived class extension

}

Implementation
Three implementation issues are worth noting:

1. Using C++ access control. In C++, the primitive operations that a template
method calls can be declared protected members. This ensures that they
are only called by the template method. Primitive operations that must be

TEMPLATE METHOD 329

overridden are declared pure virtual. The template method itself should not
be overridden; therefore you can make the template method a nonvirtual
member function.

2. Minimizing primitive operations. An important goal in designing template
methods is to minimize the number of primitive operations that a subclass
must override to flesh out the algorithm. The more operations that need
overriding, the more tedious things get for clients.

3. Naming conventions. You can identify the operations that should be overrid
den by adding a prefix to their names. For example, the MacApp framework
for Macintosh applications [App89] prefixes template method names with
"Do-": "DoCreateDocument", "DoRead", and so forth.

Sample Code
The following C++ example shows how a parent class can enforce an invariant for
its subclasses. The example comes from NeXT's AppKit [Add94], Consider a class
View that supports drawing on the screen. View enforces the invariant that its
subclasses can draw into a view only after it becomes the "focus," which requires
certain drawing state (for example, colors and fonts) to be set up properly.

We can use a Display template method to set up this state. View defines two
concrete operations, SetFocus and ResetFocus, that set up and clean up the
drawing state, respectively. View's DoDi splay hook operation performs the ac
tual drawing. Display calls SetFocus before DoDi splay to set up the drawing
state; Display calls ResetFocus afterwards to release the drawing state.

void View::Display () {
SetFocus();
DoDisplay();
ResetFocus();

}

To maintain the invariant, the View's clients always call Display, and View
subclasses always override DoDisplay.

DoDisplay does nothing in View:

void View::DoDisplay () { }

Subclasses override it to add their specific drawing behavior:

void MyView::DoDisplay () {
// render the view's contents

}

Known Uses
Template methods are so fundamental that they can be found in almost every

330 BEHAVIORAL PATTERNS CHAPTER 5

abstract class. Wirfs-Brock et al. [WBWW90, WBJ90] provide a good overview
and discussion of template methods.

Related Patterns
Factory Methods (107) are often called by template methods. In the Motivation
example, the factory method DoCreateDocument is called by the template method
OpenDocument.

Strategy (315): Template methods use inheritance to vary part of an algorithm.
Strategies use delegation to vary the entire algorithm.

VISITOR 331

VISITOR Object Behavioral

Intent
Represent an operation to be performed on the elements of an object structure. Vis
itor lets you define a new operation without changing the classes of the elements
on which it operates.

Motivation
Consider a compiler that represents programs as abstract syntax trees. It will need
to perform operations on abstract syntax trees for "static semantic" analyses like
checking that all variables are defined. It will also need to generate code. So it might
define operations for type-checking, code optimization, flow analysis, checking
for variables being assigned values before they're used, and so on. Moreover,
we could use the abstract syntax trees for pretty-printing, program restructuring,
code instrumentation, and computing various metrics of a program.

Most of these operations will need to treat nodes that represent assignment state
ments differently from nodes that represent variables or arithmetic expressions.
Hence there will be one class for assignment statements, another for variable
accesses, another for arithmetic expressions, and so on. The set of node classes
depends on the language being compiled, of course, but it doesn't change much
for a given language.

This diagram shows part of the Node class hierarchy. The problem here is that
distributing all these operations across the various node classes leads to a system
that's hard to understand, maintain, and change. It will be confusing to have type-
checking code mixed with pretty-printing code or flow analysis code. Moreover,
adding a new operation usually requires recompiling all of these classes. It would

332 BEHAVIORAL PATTERNS CHAPTER 5

be better if each new operation could be added separately, and the node classes
were independent of the operations that apply to them.

We can have both by packaging related operations from each class in a separate
object, called a visitor, and passing it to elements of the abstract syntax tree as it's
traversed. When an element "accepts" the visitor, it sends a request to the visitor
that encodes the element's class. It also includes the element as an argument. The
visitor will then execute the operation for that element—the operation that used
to be in the class of the element.

For example, a compiler that didn't use visitors might type-check a procedure
by calling the TypeCheck operation on its abstract syntax tree. Each of the nodes
would implement TypeCheck by calling TypeCheck on its components (see the
preceding class diagram). If the compiler type-checked a procedure using visitors,
then it would create a TypeCheckingVisitor object and call the Accept operation
on the abstract syntax tree with that object as an argument. Each of the nodes
would implement Accept by calling back on the visitor: an assignment node
calls VisitAssignment operation on the visitor, while a variable reference calls
VisitVariableReference. What used to be the TypeCheck operation in class Assign-
mentNode is now the VisitAssignment operation on TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need an abstract parent
class NodeVisitor for all visitors of an abstract syntax tree. NodeVisitor must
declare an operation for each node class. An application that needs to compute
program metrics will define new subclasses of NodeVisitor and will no longer
need to add application-specific code to the node classes. The Visitor pattern
encapsulates the operations for each compilation phase in a Visitor associated
with that phase.

VISITOR 333

With the Visitor pattern, you define two class hierarchies: one for the elements
being operated on (the Node hierarchy) and one for the visitors that define op
erations on the elements (the NodeVisitor hierarchy). You create a new operation
by adding a new subclass to the visitor class hierarchy. As long as the grammar
that the compiler accepts doesn't change (that is, we don't have to add new Node
subclasses), we can add new functionality simply by defining new NodeVisitor
subclasses.

Applicability
Use the Visitor pattern when

• an object structure contains many classes of objects with differing interfaces,
and you want to perform operations on these objects that depend on their
concrete classes.

• many distinct and unrelated operations need to be performed on objects in an
object structure, and you want to avoid "polluting" their classes with these
operations. Visitor lets you keep related operations together by defining them
in one class. When the object structure is shared by many applications, use
Visitor to put operations in just those applications that need them.

• the classes defining the object structure rarely change, but you often want
to define new operations over the structure. Changing the object structure
classes requires redefining the interface to all visitors, which is potentially
costly. If the object structure classes change often, then it's probably better to
define the operations in those classes.

334 BEHAVIORAL PATTERNS CHAPTER 5

Structure

Participants
• Visitor (NodeVisitor)

- declares a Visit operation for each class of ConcreteElement in the object
structure. The operation's name and signature identifies the class that sends
the Visit request to the visitor. That lets the visitor determine the concrete
class of the element being visited. Then the visitor can access the element
directly through its particular interface.

• ConcreteVisitor (TypeCheckingVisitor)

- implements each operation declared by Visitor. Each operation implements
a fragment of the algorithm defined for the corresponding class of object
in the structure. ConcreteVisitor provides the context for the algorithm
and stores its local state. This state often accumulates results during the
traversal of the structure.

• Element (Node)

- defines an Accept operation that takes a visitor as an argument.

VISITOR 335

• ConcreteElement (AssignmentNode,VariableRefNode)

- implements an Accept operation that takes a visitor as an argument.

• ObjectStructure (Program)

- can enumerate its elements.

- may provide a high-level interface to allow the visitor to visit its elements.

- may either be a composite (see Composite (163)) or a collection such as a
list or a set.

Collaborations
• A client that uses the Visitor pattern must create a ConcreteVisitor object and

then traverse the object structure, visiting each element with the visitor.
• When an element is visited, it calls the Visitor operation that corresponds to

its class. The element supplies itself as an argument to this operation to let the
visitor access its state, if necessary.
The following interaction diagram illustrates the collaborations between an
object structure, a visitor, and two elements:

anObjectStructure aConcreteElementA aConcreteElementB aCoricreteVisitor

Accept(aVisitor)

Accept(aVlsitor)

L
VisitConcreteElementA(aConcreteElementA)

Accept(aVisitor)

Accept(aVlsitor)

[OperationA()

Accept(aVisitor)

Accept(aVlsitor)

I

T

VlsitConcreteElementB(aConcreteElementB)

I

T

VlsitConcreteElementB(aConcreteElementB)

I

T

OperationBQ I

T

Consequences
Some of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor makes adding new operations easy. Visitors make it easy to add operations
that depend on the components of complex objects. You can define a new
operation over an object structure simply by adding a new visitor. In contrast,
if you spread functionality over many classes, then you must change each
class to define a new operation.

2. A visitor gathers related operations and separates unrelated ones. Related behav
ior isn't spread over the classes defining the object structure; it's localized
in a visitor. Unrelated sets of behavior are partitioned in their own visitor

BEHAVIORAL PATTERNS CHAPTER 5

subclasses. That simplifies both the classes defining the elements and the al
gorithms defined in the visitors. Any algorithm-specific data structures can
be hidden in the visitor.

3. Adding new ConcreteElement classes is hard. The Visitor pattern makes it hard
to add new subclasses of Element. Each new ConcreteElement gives rise to
a new abstract operation on Visitor and a corresponding implementation
in every Concrete Visitor class. Sometimes a default implementation can be
provided in Visitor that can be inherited by most of the Concrete Visitors, but
this is the exception rather than the rule.
So the key consideration in applying the Visitor pattern is whether you are
mostly likely to change the algorithm applied over an object structure or
the classes of objects that make up the structure. The Visitor class hierarchy
can be difficult to maintain when new ConcreteElement classes are added
frequently. In such cases, it's probably easier just to define operations on the
classes that make up the structure. If the Element class hierarchy is stable,
but you are continually adding operations or changing algorithms, then the
Visitor pattern will help you manage the changes.

4. Visiting across class hierarchies. An iterator (see Iterator (257)) can visit the
objects in a structure as it traverses them by calling their operations. But an
iterator can't work across object structures with different types of elements.
For example, the Iterator interface defined on page 263 can access only objects
of type Item:

template <class Item>
class Iterator {

I I . . .
Item Currentltem() const;

} ;

This implies that all elements the iterator can visit have a common parent
class Item.

Visitor does not have this restriction. It can visit objects that don't have a
common parent class. You can add any type of object to a Visitor interface.
For example, in

class Visitor {
public:

I I . . .
void VisitMyType(MyType*);
void VisitYourType(YourType*);

} ;

MyType and YourType do not have to be related through inheritance at all.

5. Accumulating state. Visitors can accumulate state as they visit each element
in the object structure. Without a visitor, this state would be passed as extra
arguments to the operations that perform the traversal, or they might appear
as global variables.

VISITOR 337

6. Breaking encapsulation. Visitor's approach assumes that the ConcreteElement
interface is powerful enough to let visitors do their job. As a result, the pattern
often forces you to provide public operations that access an element's internal
state, which may compromise its encapsulation.

Implementation
Each object structure will have an associated Visitor class. This abstract visitor
class declares a VisitConcreteElement operation for each class of ConcreteEle
ment defining the object structure. Each Visit operation on the Visitor declares
its argument to be a particular ConcreteElement, allowing the Visitor to access
the interface of the ConcreteElement directly. ConcreteVisitor classes override
each Visit operation to implement visitor-specific behavior for the corresponding
ConcreteElement class.

The Visitor class would be declared like this in C++:

class Visitor {
public:

virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);

// and so on for other concrete elements
protected:

Visitor();
} ;

Each class of ConcreteElement implements an Accept operation that calls the
matching Visit. . . operation on the visitor for that ConcreteElement. Thus the
operation that ends up getting called depends on both the class of the element
and the class of the visitor.10

The concrete elements are declared as

class Element {
public:

virtual "Element();
virtual void Accept(Visitors) = 0;

protected:
Element() ;

} ;

10We could use function overloading to give these operations the same simple name, like Visit, since
the operations are already differentiated by the parameter they're passed. There are pros and cons o sue
overloading. On the one hand, it reinforces the fact that each operation involves the same analysis, all ei on
a different argument. On the other hand, that might make what's going on at the call site less o vious o
someone reading the code. It really boils down to whether you believe function overloading is goo or no .

338 BEHAVIORAL PATTERNS CHAPTER 5

class ElementA : public Element {
public:

ElementA();
virtual void Accept(Visitors v) { v.VisitElementA(this); }

} ;

class ElementB : public Element {
public:

ElementB();
virtual void Accept(Visitors v) { v.VisitElementB(this); }

} ;

A CompositeElement class might implement Accept like this:

class CompositeElement : public Element {
public:

virtual void Accept(Visitors);
private:

List<Element*>* _children;
} ;

void CompositeElement::Accept (Visitors v) {
ListIterator<Element*> i(_children);

for (i. First (); Si.IsDoneO; i.NextO) (
i.Currentltem()->Accept(v);

}
v.VisitCompositeElement(this);

}

Here are two other implementation issues that arise when you apply the Visitor
pattern:

1. Double dispatch. Effectively, the Visitor pattern lets you add operations to
classes without changing them. Visitor achieves this by using a technique
called double-dispatch. It's a well-known technique. In fact, some program
ming languages support it directly (CLOS, for example). Languages like C++
and Smalltalk support single-dispatch.
In single-dispatch languages, two criteria determine which operation will
fulfill a request: the name of the request and the type of receiver. For ex
ample, the operation that a GenerateCode request will call depends on the
type of node object you ask. In C++, calling GenerateCode on an instance of
Var iableRef Node will call Var iableRefNode: : GenerateCode (which
generates code for a variable reference). Calling GenerateCode on an
AssignmentNode will call AssignmentNode: :GenerateCode (which
will generate code for an assignment). The operation that gets executed
depends both on the kind of request and the type of the receiver.
"Double-dispatch" simply means the operation that gets executed depends
on the kind of request and the types of two receivers. Accept is a double-
dispatch operation. Its meaning depends on two types: the Visitor's and the

VISITOR 339

Element's. Double-dispatching lets visitors request different operations on
each class of element.11

This is the key to the Visitor pattern: The operation that gets executed de
pends on both the type of Visitor and the type of Element it visits. Instead of
binding operations statically into the Element interface, you can consolidate
the operations in a Visitor and use Accept to do the binding at run-time. Ex
tending the Element interface amounts to defining one new Visitor subclass
rather than many new Element subclasses.

2. Who is responsible for traversing the object structure? A visitor must visit each
element of the object structure. The question is, how does it get there? We can
put responsibility for traversal in any of three places: in the object structure,
in the visitor, or in a separate iterator object (see Iterator (257)).

Often the object structure is responsible for iteration. A collection will simply
iterate over its elements, calling the Accept operation on each. A composite
will commonly traverse itself by having each Accept operation traverse the
element s children and call Accept on each of them recursively.

Another solution is to use an iterator to visit the elements. In C++, you could
use either an internal or external iterator, depending on what is available
and what is most efficient. In Smalltalk, you usually use an internal iterator
using do: and a block. Since internal iterators are implemented by the object
structure, using an internal iterator is a lot like making the object structure
responsible for iteration. The main difference is that an internal iterator will
not cause double-dispatching—it will call an operation on the visitor with
an element as an argument as opposed to calling an operation on the element
with the visitor as an argument. But it's easy to use the Visitor pattern with
an internal iterator if the operation on the visitor simply calls the operation
on the element without recursing.

You could even put the traversal algorithm in the visitor, although you'll end
up duplicating the traversal code in each Concrete Visitor for each aggregate
ConcreteElement. The main reason to put the traversal strategy in the visitor
is to implement a particularly complex traversal, one that depends on the
results of the operations on the object structure. We'll give an example of
such a case in the Sample Code.

Sample Code
Because visitors are usually associated with composites, we'll use the Equipment
classes defined in the Sample Code of Composite (163) to illustrate the Visitor
pattern. We will use Visitor to define operations for computing the inventory of
materials and the total cost for a piece of equipment. The Equipment classes are

11 If we can have double-dispatch, then why not triple or quadruple, or any other number? Actually, double-
dispatch is just a special case of multiple dispatch, in which the operation is chosen based on any number
of types. (CLOS actually supports multiple dispatch.) Languages that support double- or multiple dispatch
lessen the need for the Visitor pattern.

340 BEHAVIORAL PATTERNS CHAPTER 5

so simple that using Visitor isn't really necessary, but they make it easy to see
what's involved in implementing the pattern.

Here again is the Equipment class from Composite (163). We've augmented it
with an Accept operation to let it work with a visitor.

class Equipment {
public:

virtual "Equipment();

const char* Name() { return _name; }

virtual Watt Power();
virtual Currency NetPriceO;
virtual Currency DiscountPrice();

virtual void Accept(EquipmentVisitor&);
protected:

Equipment(const char*);
private:

const char* _name;
} ;

The Equipment operations return the attributes of a piece of equipment, such as
its power consumption and cost. Subclasses redefine these operations appropri
ately for specific types of equipment (e.g., a chassis, drives, and planar boards).

The abstract class for all visitors of equipment has a virtual function for each
subclass of equipment, as shown next. All of the virtual functions do nothing by
default.

class EquipmentVisitor {
public:

virtual "EquipmentVisitor();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);

// and so on for other concrete subclasses of Equipment
protected:

EquipmentVisitor() ;
} ;

Equipment subclasses define Accept in basically the same way: It calls the
EquipmentVisitor operation that corresponds to the class that received the
Accept request, like this:

void FloppyDisk::Accept (EquipmentVisitor& visitor) {
visitor.VisitFloppyDisk(this);

}

VISITOR 341

Equipment that contains other equipment (in particular, subclasses of Com
pos iteEquipment in the Composite pattern) implements Accept by iterating
over their children and calling Accept on each of them. They then call the Visit
operation on themselves. For example, Chassis : : Accept could traverse all the
parts in the chassis as follows:

void Chassis::Accept (EquipmentVisitor& visitor) {
for (

ListIterator<Equipment*> i(_parts);
!i.IsDone();
i.Next()

) {

i.Currentltem()->Accept(visitor);
}

visitor.VisitChassis(this);
}

Subclasses of EquipmentVisitor define particular algorithms over the equip
ment structure. The Pr ic ingVi s i tor computes the cost of the equipment struc
ture. It computes the net price of all simple equipment (e.g., floppies) and the
discount price of all composite equipment (e.g., chassis and buses).

class PricingVisitor : public EquipmentVisitor {
public:

PricingVisitor();

Currency& GetTotalPrice();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);
I I . . .

private:
Currency _total;

} ;

void PricingVisitor::VisitFloppyDisk (FloppyDisk* e) {
_total += e->NetPrice();

}

void PricingVisitor::VisitChassis (Chassis* e) {
_total += e->DiscountPrice();

}

PricingVisitor will compute the total cost of all nodes in the equipment
structure. Note that PricingVisitor chooses the appropriate pricing policy
lor a class of equipment by dispatching to the corresponding member function.
What s more, we can change the pricing policy of an equipment structure just by
changing the PricingVisitor class.

342 BEHAVIORAL PATTERNS CHAPTER 5

We can define a visitor for computing inventory like this:

class InventoryVisitor : public EquipmentVisitor {
public:

InventoryVisitor();

Inventory& GetInventory();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);
I I . . .

private:
Inventory _inventory;

} ;

The InventoryVisitor accumulates the totals for each type of equipment in
the object structure. InventoryVisitor uses an Inventory class that defines
an interface for adding equipment (which we won't bother defining here).

void InventoryVisitor::VisitFloppyDisk (FloppyDisk* e) {
_inventory.Accumulate(e);

}

void InventoryVisitor::VisitChassis (Chassis* e) {
_inventory.Accumulate(e);

}

Here's how we can use an InventoryVisitor on an equipment structure:

Equipment * component;
InventoryVisitor visitor;

component->Accept(visitor);
cout << "Inventory "

< < component->Name()
« visitor.Getlnventory();

Now we'll show how to implement the Smalltalk example from the Interpreter
pattern (see page 248) with the Visitor pattern. Like the previous example, this
one is so small that Visitor probably won't buy us much, but it provides a good
illustration of how to use the pattern. Further, it illustrates a situation in which
iteration is the visitor's responsibility.

The object structure (regular expressions) is made of four classes, and all of
them have an accept: method that takes the visitor as an argument. In class
SequenceExpression, the accept: method is

VISITOR 343

accept: aVisitor
aVisitor visitSequence: self

In class RepeatExpression, the accept: method sends the visitRepeat:
message. In class AlternationExpression, it sends the visitAlterna-
tion: message. In class LiteralExpression, it sends the visitLiteral:
message.

The four classes also must have accessing functions that the visitor can use.
For SequenceExpression these are expressionl and expression2; for
AlternationExpression these are alternativel and alternative2; for
RepeatExpression it is repetition; and for LiteralExpression these are
components.

The Concrete Visitor class is REMatchingVisitor. It is responsible for the tra
versal because its traversal algorithm is irregular. The biggest irregularity is
that a RepeatExpression will repeatedly traverse its component. The class
REMatchingVisitor has an instance variable inputstate. Its methods are
essentially the same as the match: methods of the expression classes in the In
terpreter pattern except they replace the argument named inputstate with the
expression node being matched. However, they still return the set of streams that
the expression would match to identify the current state.

visitSequence: sequenceExp
inputstate := sequenceExp expressionl accept: self.
sequenceExp expression2 accept: self.

visitRepeat: repeatExp
I finalState I
finalState := inputstate copy.
[inputstate isEmpty]

whileFalse:

[inputstate := repeatExp repetition accept: self.
finalState addAll: inputstate].

finalState

visitAlternation: alternateExp
I finalState originalState I
originalstate := inputstate.
finalState := alternateExp alternativel accept: self,
inputstate := originalstate.
finalState addAll: (alternateExp alternative2 accept: self).
finalState

344 BEHAVIORAL PATTERNS CHAPTER 5

visitLiteral: literalExp
I finalState tStream I
finalState := Set new.
inputState

do:
[:stream I tStream := stream copy.

(tStream nextAvailable:
literalExp components size

) = literalExp components
ifTrue: [finalState add: tStream]

] •
finalState

Known Uses
The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator.
It's used primarily for algorithms that analyze source code. It isn't used for code
generation or pretty-printing, although it could be.

IRIS Inventor [Str93] is a toolkit for developing 3-D graphics applications. Inventor
represents a three-dimensional scene as a hierarchy of nodes, each representing
either a geometric object or an attribute of one. Operations like rendering a scene
or mapping an input event require traversing this hierarchy in different ways.
Inventor does this using visitors called "actions." There are different visitors for
rendering, event handling, searching, filing, and determining bounding boxes.

To make adding new nodes easier, Inventor implements a double-dispatch scheme
for C++. The scheme relies on run-time type information and a two-dimensional
table in which rows represent visitors and columns represent node classes. The
cells store a pointer to the function bound to the visitor and node class.

Mark Linton coined the term "Visitor" in the X Consortium's Fresco Application
Toolkit specification [LP93].

Related Patterns
Composite (163): Visitors can be used to apply an operation over an object structure
defined by the Composite pattern.

Interpreter (243): Visitor may be applied to do the interpretation.

DISCUSSION OF BEHAVIORAL PATTERNS 345

Discussion of Behavioral Patterns

Encapsulating Variation

Encapsulating variation is a theme of many behavioral patterns. When an aspect of
a program changes frequently, these patterns define an object that encapsulates that
aspect. Then other parts of the program can collaborate with the object whenever they
depend on that aspect. The patterns usually define an abstract class that describes the
encapsulating object, and the pattern derives its name from that object.12 For example,

• a Strategy object encapsulates an algorithm (Strategy (315)),

• a State object encapsulates a state-dependent behavior (State (305)),

• a Mediator object encapsulates the protocol between objects (Mediator (273)), and

• an Iterator object encapsulates the way you access and traverse the components
of an aggregate object (Iterator (257)).

These patterns describe aspects of a program that are likely to change. Most patterns
have two kinds of objects: the new object(s) that encapsulate the aspect, and the existing
object(s) that use the new ones. Usually the functionality of new objects would be an
integral part of the existing objects were it not for the pattern. For example, code for
a Strategy would probably be wired into the strategy's Context, and code for a State
would be implemented directly in the state's Context.

But not all object behavioral patterns partition functionality like this. For example,
Chain of Responsibility (223) deals with an arbitrary number of objects (i.e., a chain),
all of which may already exist in the system.

Chain of Responsibility illustrates another difference in behavioral patterns: Not all
define static communication relationships between classes. Chain of Responsibility
prescribes communication between an open-ended number of objects. Other patterns
involve objects that are passed around as arguments.

Objects as Arguments

Several patterns introduce an object that's always used as an argument. One of these is
Visitor (331). A Visitor object invokes a polymorphic Accept operation on the objects it
visits. The visitor is never considered a part of those objects, even though the conven
tional alternative to the pattern is to distribute Visitor code across the object structure
classes.

12lniS-7xth<;rie mns thrOUgh other kinds of patterns, too. AbstractFactory (87), Builder (97), and Proto
type (117) all encapsulate knowledge about how objects are created. Decorator (175) encapsulates responsi
bility that can be added to an object. Bridge (151) separates an abstraction from its implementation, letting
them vary independently.

346 BEHAVIORAL PATTERNS CHAPTER 5

Other patterns define objects that act as magic tokens to be passed around and invoked
at a later time. Both Command (233) and Memento (283) fall into this category. In
Command, the token represents a request; in Memento, it represents the internal state
of an object at a particular time. In both cases, the token can have a complex internal
representation, but the client is never aware of it. But even here there are differences.
Polymorphism is important in the Command pattern, because executing the Command
object is a polymorphic operation. In contrast, the Memento interface is so narrow that
a memento can only be passed as a value. So it's likely to present no polymorphic
operations at all to its clients.

Should Communication be Encapsulated or Distributed?

Mediator (273) and Observer (293) are competing patterns. The difference between
them is that Observer distributes communication by introducing Observer and Subject
objects, whereas a Mediator object encapsulates the communication between other
objects.

In the Observer pattern, there is no single object that encapsulates a constraint. Instead,
the Observer and the Subject must cooperate to maintain the constraint. Communica
tion patterns are determined by the way observers and subjects are interconnected: a
single subject usually has many observers, and sometimes the observer of one subject is
a subject of another observer. The Mediator pattern centralizes rather than distributes.
It places the responsibility for maintaining a constraint squarely in the mediator.

We've found it easier to make reusable Observers and Subjects than to make reusable
Mediators. The Observer pattern promotes partitioning and loose coupling between
Observer and Subject, and that leads to finer-grained classes that are more apt to be
reused.

On the other hand, it's easier to understand the flow of communication in Mediator
than in Observer. Observers and subjects are usually connected shortly after they're
created, and it s hard to see how they are connected later in the program. If you know
the Observer pattern, then you understand that the way observers and subjects are
connected is important, and you also know what connections to look for. However, the
indirection that Observer introduces will still make a system harder to understand.

Observers in Smalltalk can be parameterized with messages to access the Subject state,
and so they are even more reusable than they are in C++. This makes Observer more
attractive than Mediator in Smalltalk. Thus a Smalltalk programmer will often use
Observer where a C++ programmer would use Mediator.

Decoupling Senders and Receivers

When collaborating objects refer to each other directly, they become dependent on
each other, and that can have an adverse impact on the layering and reusability of a

DISCUSSION OF BEHAVIORAL PATTERNS 347

system. Command, Observer, Mediator, and Chain of Responsibility address how you
can decouple senders and receivers, but with different trade-offs.

The Command pattern supports decoupling by using a Command object to define the
binding between a sender and receiver:

anlnvoker aCommand aReceiver
(sender) (receiver)

-^EXKUKO ActaO 1

The Command object provides a simple interface for issuing the request (that is, the
Execute operation). Defining the sender-receiver connection in a separate object lets
the sender work with different receivers. It keeps the sender decoupled from the re
ceivers, making senders easy to reuse. Moreover, you can reuse the Command object
to parameterize a receiver with different senders. The Command pattern nominally
requires a subclass for each sender-receiver connection, although the pattern describes
implementation techniques that avoid subclassing.

The Observer pattern decouples senders (subjects) from receivers (observers) by defin
ing an interface for signaling changes in subjects. Observer defines a looser sender-
receiver binding than Command, since a subject may have multiple observers, and
their number can vary at run-time.

aSubject
(sender)

Update()

anObserver
(receiver)

anObserver
(receiver)

anObserver
(receiver)

UpdateQ

UpdateQ

T T
The Subject and Observer interfaces in the Observer pattern are designed for commu
nicating changes. Therefore the Observer pattern is best for decoupling objects when
there are data dependencies between them.

The Mediator pattern decouples objects by having them refer to each other indirectly
through a Mediator object.

348 BEHAVIORAL PATTERNS CHAPTER 5

aColleague
(sender/receiver)

X

aMediator

l

T

aColleague
(sender/receiver)

aColleague
(sender/receiver)

T
A Mediator object routes requests between Colleague objects and centralizes their com
munication. Consequently, colleagues can only talk to each other through the Mediator
interface. Because this interface is fixed, the Mediator might have to implement its
own dispatching scheme for added flexibility. Requests can be encoded and arguments
packed in such a way that colleagues can request an open-ended set of operations.

The Mediator pattern can reduce subclassing in a system, because it centralizes com
munication behavior in one class instead of distributing it among subclasses. However,
ad hoc dispatching schemes often decrease type safety.

Finally, the Chain of Responsibility pattern decouples the sender from the receiver by
passing the request along a chain of potential receivers:

aClient
(sender)

JL

aHandler
(receiver)

HandleHelp()

aHandler
(receiver)

aHandler
(receiver)

T

HandleHelp()

HandleHelp()

T

Since the interface between senders and receivers is fixed, Chain of Responsibility
may also require a custom dispatching scheme. Hence it has the same type-safety
drawbacks as Mediator. Chain of Responsibility is a good way to decouple the sender
and the receiver if the chain is already part of the system's structure, and one of several
objects may be in a position to handle the request. Moreover, the pattern offers added
flexibility in that the chain can be changed or extended easily.

DISCUSSION OF BEHAVIORAL PATTERNS 349

Summary

With few exceptions, behavioral design patterns complement and reinforce each other.
A dare "i a chainof responsibility for example, will probably include at least one ap
plication of Template Method (325). The template method can use primitive operations
to determine whether the object should handle the request and to choose the object to
forward to. The chain can use the Command pattern to represent requests as objects
Interpreter (243) can use the State pattern to define parsing contexts. An iterator can
traverse an aggregate, and a visitor can apply an operation to each of its elements.

rrZlSW»k WeUW"h °ther Pattems< to°-For sample, * system that uses
he Composite (163) pattern might use a vrsitor to perform operations on components of

the composition. It could use Chain of Responsibility to let components access global
properties through their parent. It could also use Decorator (175) to override these
properties on parts of the composition. It could use the Observer pattern to tie one
object structure to another and the State pattern to let a component change its behavior
as its state changes. The composition itself might be created using the approach in
Builder (97), and it might be treated as a Prototype (117) by some other part of the

ed^°bjeCt;0rienteduSyStemS are just Iike this-they have multiple patterns
embedded m them—but not because their designers thought in these terms. Comoo-
S °n at thePattern level rather than the class or object levels lets us achieve the same
synergy with greater ease. me same

