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Chapter 4 

Structural Patterns 

Structural patterns are concerned with how classes and objects are composed to form 
larger structures. Structural class patterns use inheritance to compose interfaces or im­
plementations. As a simple example, consider how multiple inheritance mixes two or 
more classes into one. The result is a class that combines the properties of its parent 
classes. This pattern is particularly useful for making independently developed class 
libraries work together. Another example is the class form of the Adapter (139) pat­
tern. In general, an adapter makes one interface (the adaptee's) conform to another, 
thereby providing a uniform abstraction of different interfaces. A class adapter accom­
plishes this by inheriting privately from an adaptee class. The adapter then expresses 
its interface in terms of the adaptee's. 

Rather than composing interfaces or implementations, structural object patterns de­
scribe ways to compose objects to realize new functionality. The added flexibility of 
object composition comes from the ability to change the composition at run-time, which 
is impossible with static class composition. 

Composite (163) is an example of a structural object pattern. It describes how to build 
a class hierarchy made up of classes for two kinds of objects: primitive and composite. 
The composite objects let you compose primitive and other composite objects into 
arbitrarily complex structures. In the Proxy (207) pattern, a proxy acts as a convenient 
surrogate or placeholder for another object. A proxy can be used in many ways. It can 
act as a local representative for an object in a remote address space. It can represent 
a large object that should be loaded on demand. It might protect access to a sensitive 
object. Proxies provide a level of indirection to specific properties of objects. Hence they 
can restrict, enhance, or alter these properties. 

The Flyweight (195) pattern defines a structure for sharing objects. Objects are shared 
for at least two reasons: efficiency and consistency. Flyweight focuses on sharing for 
space efficiency. Applications that use lots of objects must pay careful attention to 
the cost of each object. Substantial savings can be had by sharing objects instead of 
replicating them. But objects can be shared only if they don't define context-dependent 
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138 STRUCTURAL PATTERNS CHAPTER 4 

state. Flyweight objects have no such state. Any additional information they need to 
perform their task is passed to them when needed. With no context-dependent state, 
Flyweight objects may be shared freely. 

Whereas Flyweight shows how to make lots of little objects, Facade (185) shows how 
to make a single object represent an entire subsystem. A facade is a representative for a 
set of objects. The facade carries out its responsibilities by forwarding messages to the 
objects it represents. The Bridge (151) pattern separates an object's abstraction from its 
implementation so that you can vary them independently. 

Decorator (175) describes how to add responsibilities to objects dynamically. Decorator 
is a structural pattern that composes objects recursively to allow an open-ended number 
of additional responsibilities. For example, a Decorator object containing a user interface 
component can add a decoration like a border or shadow to the component, or it can 
add functionality like scrolling and zooming. We can add two decorations simply by 
nesting one Decorator object within another, and so on for additional decorations. To 
accomplish this, each Decorator object must conform to the interface of its component 
and must forward messages to it. The Decorator can do its job (such as drawing a 
border around the component) either before or after forwarding a message. 

Many structural patterns are related to some degree. We'll discuss these relationships 
at the end of the chapter. 
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ADAPTER Class, Object Structural 

Intent 
Convert the interface of a class into another interface clients expect. Adapter lets 
classes work together that couldn't otherwise because of incompatible interfaces. 

Also Known As 
Wrapper 

Motivation 
Sometimes a toolkit class that's designed for reuse isn't reusable only because its 
interface doesn't match the domain-specific interface an application requires. 

Consider for example a drawing editor that lets users draw and arrange graphical 
elements (lines, polygons, text, etc.) into pictures and diagrams. The drawing 
editor's key abstraction is the graphical object, which has an editable shape and 
can draw itself. The interface for graphical objects is defined by an abstract class 
called Shape. The editor defines a subclass of Shape for each kind of graphical 
object: a LineShape class for lines, a PolygonShape class for polygons, and so 
forth. 

Classes for elementary geometric shapes like LineShape and PolygonShape are 
rather easy to implement, because their drawing and editing capabilities are 
inherently limited. But a TextShape subclass that can display and edit text is 
considerably more difficult to implement, since even basic text editing involves 
complicated screen update and buffer management. Meanwhile, an off-the-shelf 
user interface toolkit might already provide a sophisticated TextView class for 
displaying and editing text. Ideally we'd like to reuse TextView to implement 
TextShape, but the toolkit wasn't designed with Shape classes in mind. So we 
can't use TextView and Shape objects interchangeably. 

How can existing and unrelated classes like TextView work in an application that 
expects classes with a different and incompatible interface? We could change the 
TextView class so that it conforms to the Shape interface, but that isn't an option 
unless we have the toolkit's source code. Even if we did, it wouldn't make sense to 
change TextView; the toolkit shouldn't have to adopt domain-specific interfaces 
just to make one application work. 

Instead, we could define TextShape so that it adapts the TextView interface to 
Shape's. We can do this in one of two ways: (1) by inheriting Shape's interface 
and TextView's implementation or (2) by composing a TextView instance within 
a TextShape and implementing TextShape in terms of TextView's interface. These 
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two approaches correspond to the class and object versions of the Adapter pattern. 
We call TextShape an adapter. 

This diagram illustrates the object adapter case. It shows how BoundingBox re­
quests, declared in class Shape, are converted to GetExtent requests defined in 
TextView. Since TextShape adapts TextView to the Shape interface, the drawing 
editor can reuse the otherwise incompatible TextView class. 

Often the adapter is responsible for functionality the adapted class doesn't pro­
vide. The diagram shows how an adapter can fulfill such responsibilities. The 
user should be able to "drag" every Shape object to a new location interactively, 
but TextView isn't designed to do that. TextShape can add this missing function­
ality by implementing Shape's CreateManipulator operation, which returns an 
instance of the appropriate Manipulator subclass. 

Manipulator is an abstract class for objects that know how to animate a Shape in 
response to user input, like dragging the shape to a new location. There are sub­
classes of Manipulator for different shapes; TextManipulator, for example, is the 
corresponding subclass for TextShape. By returning a TextManipulator instance, 
TextShape adds the functionality that TextView lacks but Shape requires. 

Applicability 
Use the Adapter pattern when 

• you want to use an existing class, and its interface does not match the one 
you need. 

• you want to create a reusable class that cooperates with unrelated or unfore­
seen classes, that is, classes that don't necessarily have compatible interfaces. 

• (object adapter only) you need to use several existing subclasses, but it's im­
practical to adapt their interface by subclassing every one. An object adapter 
can adapt the interface of its parent class. 
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Structure 
A class adapter uses multiple inheritance to adapt one interface to another: 

An object adapter relies on object composition: 

Participants 
• Target (Shape) 

- defines the domain-specific interface that Client uses. 

• Client (DrawingEditor) 

- collaborates with objects conforming to the Target interface. 

• Adaptee (TextView) 

- defines an existing interface that needs adapting. 

• Adapter (TextShape) 

- adapts the interface of Adaptee to the Target interface. 

Collaborations 
• Clients call operations on an Adapter instance. In turn, the adapter calls 

Adaptee operations that carry out the request. 
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Consequences 
Class and object adapters have different trade-offs. A class adapter 

• adapts Adaptee to Target by committing to a concrete Adapter class. As a 
consequence, a class adapter won't work when we want to adapt a class and 
all its subclasses. 

• lets Adapter override some of Adaptee's behavior, since Adapter is a subclass 
of Adaptee. 

• introduces only one object, and no additional pointer indirection is needed 
to get to the adaptee. 

An object adapter 

• lets a single Adapter work with many Adaptees—that is, the Adaptee itself 
and all of its subclasses (if any). The Adapter can also add functionality to 
all Adaptees at once. 

• makes it harder to override Adaptee behavior. It will require subclassing 
Adaptee and making Adapter refer to the subclass rather than the Adaptee 
itself. 

Here are other issues to consider when using the Adapter pattern: 

1. How much adapting does Adapter do? Adapters vary in the amount of work they 
do to adapt Adaptee to the Target interface. There is a spectrum of possible 
work, from simple interface conversion—for example, changing the names of 
operations—to supporting an entirely different set of operations. The amount 
of work Adapter does depends on how similar the Target interface is to 
Adaptee's. 

2. Pluggable adapters. A class is more reusable when you minimize the assump­
tions other classes must make to use it. By building interface adaptation into 
a class, you eliminate the assumption that other classes see the same inter­
face. Put another way, interface adaptation lets us incorporate our class into 
existing systems that might expect different interfaces to the class. Object-
Works\Smalltalk [Par90] uses the term pluggable adapter to describe classes 
with built-in interface adaptation. 
Consider a TreeDisplay widget that can display tree structures graphically. 
If this was a special-purpose widget for use in just one application, then we 
might require the objects that it displays to have a specific interface; that 
is, all must descend from a Tree abstract class. But if we wanted to make 
TreeDisplay more reusable (say we wanted to make it part of a toolkit of 
useful widgets), then that requirement would be unreasonable. Applications 
will define their own classes for tree structures. They shouldn't be forced 
to use our Tree abstract class. Different tree structures will have different 
interfaces. 
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In a directory hierarchy, for example, children might be accessed with a 
GetSubdirectories operation, whereas in an inheritance hierarchy, the corre­
sponding operation might be called GetSubclasses. A reusable TreeDisplay 
widget must be able to display both kinds of hierarchies even if they use 
different interfaces. In other words, the TreeDisplay should have interface 
adaptation built into it. 
We'll look at different ways to build interface adaptation into classes in the 
Implementation section. 

3. Using two-way adapters to provide transparency. A potential problem with 
adapters is that they aren't transparent to all clients. An adapted object no 
longer conforms to the Adaptee interface, so it can't be used as is wherever 
an Adaptee object can. Two-way adapters can provide such transparency. 
Specifically, they're useful when two different clients need to view an object 
differently. 
Consider the two-way adapter that integrates Unidraw, a graphical edi­
tor framework [VL90], and QOCA, a constraint-solving toolkit [HHMV92]. 
Both systems have classes that represent variables explicitly: Unidraw has 
StateVariable, and QOCA has ConstraintVariable. To make Unidraw work 
with QOCA, ConstraintVariable must be adapted to StateVariable; to let 
QOCA propagate solutions to Unidraw, StateVariable must be adapted to 
ConstraintVariable. 

(to QOCA class hierarchy) (to Unidraw class hierarchy) 

The solution involves a two-way class adapter ConstraintStateVariable, a 
subclass of both StateVariable and ConstraintVariable, that adapts the two 
interfaces to each other. Multiple inheritance is a viable solution in this case 
because the interfaces of the adapted classes are substantially different. The 
two-way class adapter conforms to both of the adapted classes and can work 
in either system. 

Implementation 
Although the implementation of Adapter is usually straightforward, here are 
some issues to keep in mind: 
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1. Implementing class adapters in C++. In a C++ implementation of a class adapter, 
Adapter would inherit publicly from Target and privately from Adaptee. 
Thus Adapter would be a subtype of Target but not of Adaptee. 

2. Pluggable adapters. There are several ways to implement pluggable adapters. 
As an example, let's look at three ways to implement the TreeDisplay widget 
described earlier, which can lay out and display a hierarchical structure 
automatically. 

The first step, which is common to all three of the implementations discussed 
here, is to find a "narrow" interface for Adaptee, that is, the smallest subset 
of operations that lets us do the adaptation. A narrow interface consisting of 
only a couple of operations is easier to adapt than an interface with dozens 
of operations. For TreeDisplay, the adaptee is any hierarchical structure. A 
minimalist interface might include two operations, one that defines how to 
present a node in the tree, and another that retrieves the node's children. 
Given this narrow interface, here are three possible implementation ap­
proaches: 

(a) Using abstract operations. Define corresponding abstract operations for 
the narrow Adaptee interface in the TreeDisplay class. Then it's up to 
subclasses to implement the abstract operations and adapt the concrete 
tree-structured object. For example, a Directory TreeDisplay subclass will 
implement these operations by accessing the directory structure: 

Directory TreeDisplay specializes the narrow interface so that its Direc­
tory Browser client can use it to display directory structures. 

(b) Using delegate objects. In this approach, TreeDisplay forwards requests 
for accessing the tree structure to a delegate object. TreeDisplay's clients 
can control the adaptation by supplying the delegate of their choice. 
For example, suppose there exists a DirectoryBrowser that uses a Tree-
Display as before. DirectoryBrowser might make a good delegate for 
adapting TreeDisplay to the hierarchical directory structure. In dy­
namically typed languages like Smalltalk or Objective C, this ap-
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proach only requires an interface for registering the delegate with the 
adapter. Then TreeDisplay simply forwards the requests to the delegate. 
NEXTSTEP [Add94l uses this approach heavily to reduce subclassing. 
Statically typed languages like C++ require an explicit interface defin­
ition for the delegate. We can specify such an interface by putting the 
narrow interface that TreeDisplay requires into a purely abstract TreeAc-
cessorDelegate class. Then we can mix this interface into the delegate of 
our choice—DirectoryBrowser in this case—using inheritance. We use 
single inheritance if the DirectoryBrowser has no existing parent class, 
multiple inheritance if it does. Mixing classes together like this is eas­
ier than introducing a new TreeDisplay subclass and implementing its 
operations individually. 

(c) Parameterized adapters. The usual way to support pluggable adapters in 
Smalltalk is to parameterize an adapter with one or more blocks. The 
block construct supports adaptation without subclassing. A block can 
adapt a request, and the adapter can store a block for each individual 
request. In our example, this means TreeDisplay stores one block for 
converting a node into a GraphicNode and another block for accessing 
a node's children. 
For example, to create TreeDisplay on a directory hierarchy, we write 

directoryDisplay := 
(TreeDisplay on: treeRoot) 

getChildrenBlock: 
[:node I node getSubdirectories] 

createGraphicNodeBlock: 
[:node I node createGraphicNode]. 

If you're building interface adaptation into a class, this approach offers 
a convenient alternative to subclassing. 
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Sample Code 
We'll give a brief sketch of the implementation of class and object adapters for the 
Motivation example beginning with the classes Shape and Text View. 

class Shape { 
public: 

Shape(); 
virtual void BoundingBox( 

Points bottomLeft, Points topRight 
) const; 
virtual Manipulator* CreateManipulator() const; 

} ; 

class TextView { 
public: 

TextView(); 
void GetOrigin(Coords x, Coords y) const; 
void GetExtent(Coords width, Coords height) const; 
virtual bool IsEmptyO const; 

} ; 

Shape assumes a bounding box defined by its opposing corners. In contrast, 
TextView is defined by an origin, height, and width. Shape also defines a 
CreateManipulator operation for creating a Manipulator object, which 
knows how to animate a shape when the user manipulates it.1 TextView has 
no equivalent operation. The class Text Shape is an adapter between these dif­
ferent interfaces. 

A class adapter uses multiple inheritance to adapt interfaces. The key to class 
adapters is to use one inheritance branch to inherit the interface and another 
branch to inherit the implementation. The usual way to make this distinction in 
C++ is to inherit the interface publicly and inherit the implementation privately. 
We'll use this convention to define the Text Shape adapter. 

class TextShape : public Shape, private TextView { 
public: 

TextShape(); 

virtual void BoundingBox( 
Points bottomLeft, Points topRight 

) const; 
virtual bool IsEmptyO const; 
virtual Manipulator* CreateManipulator() const; 

} ; 

The BoundingBox operation converts TextView's interface to conform to 
Shape's. 

1 CreateManipulator is an example of a Factory Method (107). 
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void TextShape::BoundingBox ( 
Point& bottomLeft, Points topRight 

) const { 
Coord bottom, left, width, height; 

GetOrigin(bottom, left); 
GetExtent(width, height); 

bottomLeft = Point(bottom, left); 
topRight = Point(bottom + height, left + width); 

) 

The Is Empty operation demonstrates the direct forwarding of requests common 
in adapter implementations: 

bool TextShape::IsEmpty 0 const { 
return TextView::IsEmpty(); 

) 

Finally, we define CreateManipulator (which isn't supported by TextView) 
from scratch. Assume we've already implemented a TextManipulator class 
that supports manipulation of a TextShape. 

Manipulator* TextShape::CreateManipulator () const { 
return new TextManipulator(this); 

} 

The object adapter uses object composition to combine classes with different inter­
faces. In this approach, the adapter Text Shape maintains a pointer to TextVi ew. 

class TextShape : public Shape { 
public: 

TextShape(TextView*); 

virtual void BoundingBox( 
Points bottomLeft, Points topRight 

) const; 
virtual bool IsEmpty() const; 
virtual Manipulator* CreateManipulator() const; 

private: 
TextView* _text; 

} ; 

TextShape must initialize the pointer to the TextView instance, and it does so 
in the constructor. It must also call operations on its TextView object whenever 
its own operations are called. In this example, assume that the client creates the 
TextView object and passes it to the TextShape constructor: 

TextShape::TextShape (TextView* t) { 
_text = t; 

} 
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void TextShape::BoundingBox ( 
Point& bottomLeft, Points topRight 

) const { 
Coord bottom, left, width, height; 

_text->GetOrigin(bottom, left); 
_text->GetExtent(width, height); 

bottomLeft = Point(bottom, left); 
topRight = Point(bottom + height, left + width); 

} 

bool TextShape::IsEmpty () const { 
return _text->IsEmpty() ; 

} 

CreateManipulator's implementation doesn't change from the class adapter 
version, since it's implemented from scratch and doesn't reuse any existing 
Text View functionality. 

Manipulator* TextShape::CreateManipulator () const { 
return new TextManipulator(this); 

} 

Compare this code to the class adapter case. The object adapter requires a little 
more effort to write, but it's more flexible. For example, the object adapter version 
of TextShape will work equally well with subclasses of TextView—the client 
simply passes an instance of a Text Vi ew subclass to the Text Shape constructor. 

Known Uses 
The Motivation example comes from ET++Draw, a drawing application based on 
ET++ [WGM88]. ET++Draw reuses the ET++ classes for text editing by using a 
TextShape adapter class. 

Interviews 2.6 defines an Interactor abstract class for user interface elements such 
as scroll bars, buttons, and menus [VL881. It also defines a Graphic abstract class 
for structured graphic objects such as lines, circles, polygons, and splines. Both 
Interactors and Graphics have graphical appearances, but they have different 
interfaces and implementations (they share no common parent class) and are 
therefore incompatible—you can't embed a structured graphic object in, say, a 
dialog box directly. 

Instead, Interviews 2.6 defines an object adapter called GraphicBlock, a subclass of 
Interactor that contains a Graphic instance. The GraphicBlock adapts the interface 
of the Graphic class to that of Interactor. The GraphicBlock lets a Graphic instance 
be displayed, scrolled, and zoomed within an Interactor structure. 

Pluggable adapters are common in ObjectWorks\Smalltalk [Par90]. Standard 
Smalltalk defines a ValueModel class for views that display a single value. Val-
ueModel defines a value, value: interface for accessing the value. These are 
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abstract methods. Application writers access the value with more domain-specific 
names like width and width:, but they shouldn't have to subclass ValueModel 
to adapt such application-specific names to the ValueModel interface. 

Instead, ObjectWorks\Smalltalk includes a subclass of ValueModel called Plug-
gableAdaptor. A PluggableAdaptor object adapts other objects to the ValueModel 
interface (value, value:). It can be parameterized with blocks for getting and 
setting the desired value. PluggableAdaptor uses these blocks internally to im­
plement the value, value: interface. PluggableAdaptor also lets you pass in 
the selector names (e.g., width, width:) directly for syntactic convenience. It 
converts these selectors into the corresponding blocks automatically. 

Another example from ObjectWorks\Smalltalk is the TableAdaptor class. A 
TableAdaptor can adapt a sequence of objects to a tabular presentation. The table 
displays one object per row. The client parameterizes TableAdaptor with the set 
of messages that a table can use to get the column values from an object. 

Some classes in NeXT's AppKit [ Add94] use delegate objects to perform interface 
adaptation. An example is the NXBrowser class that can display hierarchical lists 
of data. NXBrowser uses a delegate object for accessing and adapting the data. 

Meyer's "Marriage of Convenience" [Mey88] is a form of class adapter. Meyer 
describes how a FixedStack class adapts the implementation of an Array class to 
the interface of a Stack class. The result is a stack containing a fixed number of 
entries. 

Related Patterns 
Bridge (151) has a structure similar to an object adapter, but Bridge has a different 
intent: It is meant to separate an interface from its implementation so that they can 
be varied easily and independently. An adapter is meant to change the interface 
of an existing object. 

Decorator (175) enhances another object without changing its interface. A deco­
rator is thus more transparent to the application than an adapter is. As a conse-
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quence, Decorator supports recursive composition, which isn't possible with pure 
adapters. 
Proxy (207) defines a representative or surrogate for another object and does not 
change its interface. 
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BRIDGE Object Structural 

Intent 
Decouple an abstraction from its implementation so that the two can vary inde­
pendently. 

Also Known As 
Handle/Body 

Motivation 
When an abstraction can have one of several possible implementations, the usual 
way to accommodate them is to use inheritance. An abstract class defines the in­
terface to the abstraction, and concrete subclasses implement it in different ways. 
But this approach isn't always flexible enough. Inheritance binds an implemen­
tation to the abstraction permanently, which makes it difficult to modify, extend, 
and reuse abstractions and implementations independently. 

Consider the implementation of a portable Window abstraction in a user interface 
toolkit. This abstraction should enable us to write applications that work on both 
the X Window System and IBM's Presentation Manager (PM), for example. Using 
inheritance, we could define an abstract class Window and subclasses XWindow 
and PMWindow that implement the Window interface for the different platforms. 
But this approach has two drawbacks: 

1. It's inconvenient to extend the Window abstraction to cover different kinds 
of windows or new platforms. Imagine an IconWindow subclass of Window 
that specializes the Window abstraction for icons. To support IconWindows 
for both platforms, we have to implement two new classes, XlconWindow 
and PMIconWindow. Worse, we'll have to define two classes for every kind 
of window. Supporting a third platform requires yet another new Window 
subclass for every kind of window. 
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2. It makes client code platform-dependent. Whenever a client creates a win­
dow, it instantiates a concrete class that has a specific implementation. For 
example, creating an XWindow object binds the Window abstraction to the 
X Window implementation, which makes the client code dependent on the 
X Window implementation. This, in turn, makes it harder to port the client 
code to other platforms. 
Clients should be able to create a window without committing to a con­
crete implementation. Only the window implementation should depend on 
the platform on which the application runs. Therefore client code should 
instantiate windows without mentioning specific platforms. 

The Bridge pattern addresses these problems by putting the Window abstraction 
and its implementation in separate class hierarchies. There is one class hierarchy 
for window interfaces (Window, IconWindow, ApplicationWindow) and a sepa­
rate hierarchy for platform-specific window implementations, with Windowlmp 
as its root. The XWindowImp subclass, for example, provides an implementation 
based on the X Window System. 

bridge 

Window 

DrawText() 
DrawRectQ o 

O imp 
Windowlmp 

DevDrawText() 
DevDrawLinef) 

imp->DevDrawLiner 
imp->DevDrawLine( 
imp->DevDrawLine( 
imp->DevDrawLine( 

A. A 

IconWindow 

DrawBorder() 9 

TransientWindow 

DrawCloseBoxQ 9 

XWindowImp 

DevDrawText() o-
DevDrawLine() 9 

DrawRect(); 
DrawTextQ 

^1 
DrawRect(); XDrawLine(); 

PMWindowlrnp 

DevDrawLine() 
DevDrawText() 

—^3 
XDrawStringO; 

All operations on Window subclasses are implemented in terms of abstract oper­
ations from the Windowlmp interface. This decouples the window abstractions 
from the various platform-specific implementations. We refer to the relationship 
between Window and Windowlmp as a bridge, because it bridges the abstraction 
and its implementation, letting them vary independently. 



BRIDGE 153 

Applicability 
Use the Bridge pattern when 

• you want to avoid a permanent binding between an abstraction and its im­
plementation. This might be the case, for example, when the implementation 
must be selected or switched at run-time. 

• both the abstractions and their implementations should be extensible by 
subclassing. In this case, the Bridge pattern lets you combine the different 
abstractions and implementations and extend them independently. 

• changes in the implementation of an abstraction should have no impact on 
clients; that is, their code should not have to be recompiled. 

• (C++) you want to hide the implementation of an abstraction completely from 
clients. In C++ the representation of a class is visible in the class interface. 

• you have a proliferation of classes as shown earlier in the first Motivation 
diagram. Such a class hierarchy indicates the need for splitting an object into 
two parts. Rumbaugh uses the term "nested generalizations" [RBP+91] to 
refer to such class hierarchies. 

• you want to share an implementation among multiple objects (perhaps using 
reference counting), and this fact should be hidden from the client. A simple 
example is Coplien's String class [Cop92], in which multiple objects can share 
the same string representation (StringRep). 

Structure 

Client 

Abstraction 

Operation() 9 

O imp 

Operationlmp() 

imp->Operationlmp(^ 
l 

RefinedAbstraction 
ConcretelmplementorA 

Operation I mp() 

ConcretelmplementorB 

Operationlmp() 
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Participants 
• Abstraction (Window) 

- defines the abstraction's interface. 

- maintains a reference to an object of type Implementor. 

• RefinedAbstraction (IconWindow) 

- Extends the interface defined by Abstraction. 

• Implementor (Windowlmp) 

- defines the interface for implementation classes. This interface doesn't 
have to correspond exactly to Abstraction's interface; in fact the two inter­
faces can be quite different. Typically the Implementor interface provides 
only primitive operations, and Abstraction defines higher-level operations 
based on these primitives. 

• Concretelmplementor (XWindowImp, PMWindowImp) 

- implements the Implementor interface and defines its concrete implemen­
tation. 

Collaborations 
• Abstraction forwards client requests to its Implementor object. 

Consequences 
The Bridge pattern has the following consequences: 

1. Decoupling interface and implementation. An implementation is not bound per­
manently to an interface. The implementation of an abstraction can be config­
ured at run-time. It's even possible for an object to change its implementation 
at run-time. 
Decoupling Abstraction and Implementor also eliminates compile-time 
dependencies on the implementation. Changing an implementation class 
doesn't require recompiling the Abstraction class and its clients. This prop­
erty is essential when you must ensure binary compatibility between differ­
ent versions of a class library. 
Furthermore, this decoupling encourages layering that can lead to a better-
structured system. The high-level part of a system only has to know about 
Abstraction and Implementor. 

2. Improved extensibility. You can extend the Abstraction and Implementor hier­
archies independently. 

3. Hiding implementation details from clients. You can shield clients from imple­
mentation details, like the sharing of implementor objects and the accompa­
nying reference count mechanism (if any). 



BRIDGE 155 

Implementation 
Consider the following implementation issues when applying the Bridge pattern: 

1. Only one Implementor. In situations where there's only one implementation, 
creating an abstract Implementor class isn't necessary. This is a degenerate 
case of the Bridge pattern; there's a one-to-one relationship between Ab­
straction and Implementor. Nevertheless, this separation is still useful when 
a change in the implementation of a class must not affect its existing clients— 
that is, they shouldn't have to be recompiled, just relinked. 
Carolan [Car89] uses the term "Cheshire Cat" to describe this separation. In 
C++, the class interface of the Implementor class can be defined in a private 
header file that isn't provided to clients. This lets you hide an implementation 
of a class completely from its clients. 

2. Creating the right Implementor object. How, when, and where do you decide 
which Implementor class to instantiate when there's more than one? 
If Abstraction knows about all Concretelmplementor classes, then it can 
instantiate one of them in its constructor; it can decide between them based 
on parameters passed to its constructor. If, for example, a collection class 
supports multiple implementations, the decision can be based on the size of 
the collection. A linked list implementation can be used for small collections 
and a hash table for larger ones. 
Another approach is to choose a default implementation initially and change 
it later according to usage. For example, if the collection grows bigger than 
a certain threshold, then it switches its implementation to one that's more 
appropriate for a large number of items. 
It's also possible to delegate the decision to another object altogether. In 
the Window /Windowlmp example, we can introduce a factory object (see 
Abstract Factory (87)) whose sole duty is to encapsulate platform-specifics. 
The factory knows what kind of Windowlmp object to create for the platform 
in use; a Window simply asks it for a Windowlmp, and it returns the right 
kind. A benefit of this approach is that Abstraction is not coupled directly to 
any of the Implementor classes. 

3. Sharing implementors. Coplien illustrates how the Handle/Body idiom in C++ 
can be used to share implementations among several objects [Cop92]. The 
Body stores a reference count that the Handle class increments and decre­
ments. The code for assigning handles with shared bodies has the following 
general form: 
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Handles Handle::operator= (const Handles other) { 
other._body->Ref(); 
_body->Unref(); 

if (_body->RefCount() == 0) { 
delete _body; 

} 
_body = other._body; 

return *this; 
} 

4. Using multiple inheritance. You can use multiple inheritance in C++ to combine 
an interface with its implementation [Mar91]. For example, a class can inherit 
publicly from Abstraction and privately from a Concretelmplementor. But 
because this approach relies on static inheritance, it binds an implementation 
permanently to its interface. Therefore you can't implement a true Bridge 
with multiple inheritance—at least not in C++. 

Sample Code 
The following C++ code implements the Window/Windowlmp example from the 
Motivation section. The Window class defines the window abstraction for client 
applications: 

class Window { 
public: 

Window(View* contents); 

// requests handled by window 
virtual void DrawContents(); 

virtual void OpenO; 
virtual void CloseO; 
virtual void IconifyO; 
virtual void Deiconify(); 

// requests forwarded to implementation 
virtual void SetOrigin(const Points at); 
virtual void SetExtent(const Points extent); 
virtual void RaiseO; 
virtual void Lower(); 

virtual void DrawLine(const Points, const Points); 
virtual void DrawRect(const Points, const Points); 
virtual void DrawPolygon(const Point[], int n); 
virtual void DrawText(const char*, const Points); 

protected: 
Windowlmp* GetWindowImp(); 
View* GetViewO; 
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private: 
Windowlmp* _imp; 
View* ..contents; // the window's contents 

} ; 

Window maintains a reference to a Windowlmp, the abstract class that declares an 
interface to the underlying windowing system. 

class Windowlmp { 
public: 

virtual void ImpTopO = 0; 
virtual void ImpBottomO = 0; 
virtual void ImpSetExtent(const Point&) = 0; 
virtual void ImpSetOrigin(const Point&) = 0; 

virtual void DeviceRect(Coord, Coord, Coord, Coord) = 0; 
virtual void DeviceText(const char*, Coord, Coord) = 0; 
virtual void DeviceBitmap(const char*. Coord, Coord) = 0; 
// lots more functions for drawing on windows... 

protected: 
Windowlmp(); 

}; 

Subclasses of Window define the different kinds of windows the application might 
use, such as application windows, icons, transient windows for dialogs, floating 
palettes of tools, and so on. 
For example, ApplicationWindow will implement DrawContents to draw the 
View instance it stores: 

class ApplicationWindow : public Window { 
public: 

I I . . .  
virtual void DrawContents(); 

} ; 

void ApplicationWindow:-.DrawContents () { 
GetView()->DrawOn(this); 

} 

IconWindow stores the name of a bitmap for the icon it displays... 

class IconWindow : public Window { 
public: 

// ... 
virtual void DrawContents (); 

private: 
const char* _bitmapName; 

) ; 

...and it implements DrawContents to draw the bitmap on the window: 
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void IconWindow::DrawContents() { 
Windowlmp* imp = GetWindowImp(); 
if (imp != 0) { 

imp->DeviceBitmap(_bitmapName, 0.0, 0.0); 
} 

} 

Many other variations of Window are possible. A TransientWindow may need 
to communicate with the window that created it during the dialog; hence it keeps a 
reference to that window. A Pa 1 e 11 eWindow always floats above other windows. 
An IconDockWindow holds IconWindows and arranges them neatly. 

Window operations are defined in terms of the Windowlmp interface. For example, 
DrawRect extracts four coordinates from its two Point para meters before calling 
the Windowlmp operation that draws the rectangle in the window: 

void Window::DrawRect (const Point& pi, const Point& p2) { 
Windowlmp* imp = GetWindowImp(); 
imp->DeviceRect (pi .X () , pl.YO, p2.X(), p2.Y()); 

} 

Concrete subclasses of Windowlmp support different window systems. The 
XWindowImp subclass supports the X Window System: 

class XWindowImp : public Windowlmp { 
public: 

XWindowImp(); 

virtual void DeviceRect(Coord, Coord, Coord, Coord); 
// remainder of public interface... 

private: 
II lots of X window system-specific state, including: 
Display* _dpy; 
Drawable _winid; // window id 
GC _gc; // window graphic context 

) ; 

For Presentation Manager (PM), we define a PMWindowImp class: 

class PMWindowImp : public Windowlmp { 
public: 

PMWindowImp(); 
virtual void DeviceRect(Coord, Coord, Coord, Coord); 

// remainder of public interface... 
private: 

// lots of PM window system-specific state, including: 
HPS _hps; 

> ;  

These subclasses implement Windowlmp operations in terms of window system 
primitives. For example, DeviceRect is implemented for X as follows: 
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void XWindowImp::DeviceRect ( 
Coord xO, Coord yO, Coord xl, Coord yl 

) { 

int x = round(minfxO, xl)); 
int y = round(min(yO, yl)); 
int w = round(abs(xO - xl)); 
int h = round(abs(yO - yl)); 
XDrawRectangle(_dpy, _winid, _gc, x, y, w, h); 

} 

The PM implementation might look like this: 

void PMWindowImp::DeviceRect ( 
Coord xO, Coord yO, Coord xl, Coord yl 

) { 

Coord left = minfxO, xl); 
Coord right = max(xO, xl); 
Coord bottom = min(yO, yl); 
Coord top = max(yO, yl) ; 

PPOINTL point[4]; 

point[0].x = left; 
point[1].x = right; 
point[2].x = right; 
point[3].x = left; 

point[0].y = top; 
point[1].y = top; 
point[2].y = bottom; 
point[3].y = bottom; 

if ( 
(GpiBeginPath(_hps, 1L) == false) || 
(GpiSetCurrentPosition(_hps, &point[3]) == false) || 
(GpiPolyLine(_hps, 4L, point) == GPI_ERROR) || 
(GpiEndPath(_hps) == false) 

) { 
// report error 

} else { 
GpiStrokePath(_hps, 1L, 0L); 

} 
} 

How does a window obtain an instance of the right Windowlmp subclass? We 11 
assume Window has that responsibility in this example. Its GetWindowImp op­
eration gets the right instance from an abstract factory (see Abstract Factory (87)) 
that effectively encapsulates all window system specifics. 

Windowlmp* Window::GetWindowImp () { 
if (_imp ==0) { 

_imp = WindowSystemFactory::Instance()->MakeWindowImp{); 

} 
return _imp; 
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WindowSystemFactory: : Instance () returns an abstract factory that manu­
factures all window system-specific objects. For simplicity, we've made it a Sin­
gleton (127) and have let the Window class access the factory directly. 

Known Uses 
The Window example above comes from ET++ [WGM88]. In ET++, Windowlmp 
is called "WindowPort" and has subclasses such as XWindowPort and SunWin-
dowPort. The Window object creates its corresponding Implementor object by 
requesting it from an abstract factory called "WindowSystem." WindowSystem 
provides an interface for creating platform-specific objects such as fonts, cursors, 
bitmaps, and so forth. 
The ET++ Window/WindowPort design extends the Bridge pattern in that the 
WindowPort also keeps a reference back to the Window. The WindowPort im­
plementor class uses this reference to notify Window about WindowPort-specific 
events: the arrival of input events, window resizes, etc. 
Both Coplien [Cop92] and Stroustrup [Str91] mention Handle classes and give 
some examples. Their examples emphasize memory management issues like shar­
ing string representations and support for variable-sized objects. Our focus is more 
on supporting independent extension of both an abstraction and its implementa­
tion. 
libg++ [Lea88] defines classes that implement common data structures, such as Set, 
LinkedSet, HashSet, LinkedList, and HashTable. Set is an abstract class that defines 
a set abstraction, while LinkedList and HashTable are concrete implementors 
for a linked list and a hash table, respectively. LinkedSet and HashSet are Set 
implementors that bridge between Set and their concrete counterparts LinkedList 
and HashTable. This is an example of a degenerate bridge, because there's no 
abstract Implementor class. 
NeXT's AppKit [Add94] uses the Bridge pattern in the implementation and dis­
play of graphical images. An image can be represented in several different ways. 
The optimal display of an image depends on the properties of a display device, 
specifically its color capabilities and its resolution. Without help from AppKit, 
developers would have to determine which implementation to use under various 
circumstances in every application. 
To relieve developers of this responsibility, AppKit provides an NXIm-
age/NXImageRep bridge. NXImage defines the interface for handling images. 
The implementation of images is defined in a separate NXImageRep class hi­
erarchy having subclasses such as NXEPSImageRep, NXCachedlmageRep, and 
NXBitMapImageRep. NXImage maintains a reference to one or more NXIm­
ageRep objects. If there is more than one image implementation, then NXImage 
selects the most appropriate one for the current display device. NXImage is even 
capable of converting one implementation to another if necessary. The interesting 
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aspect of this Bridge variant is that NXImage can store more than one NXIm-
ageRep implementation at a time. 

Related Patterns 
An Abstract Factory (87) can create and configure a particular Bridge. 

The Adapter (139) pattern is geared toward making unrelated classes work to­
gether. It is usually applied to systems after they're designed. Bridge, on the other 
hand, is used up-front in a design to let abstractions and implementations vary 
independently. 
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Composite object structural 

Intent 
Compose objects into tree structures to represent part-whole hierarchies. Com­
posite lets clients treat individual objects and compositions of objects uniformly. 

Motivation 
Graphics applications like drawing editors and schematic capture systems let 
users build complex diagrams out of simple components. The user can group 
components to form larger components, which in turn can be grouped to form still 
larger components. A simple implementation could define classes for graphical 
primitives such as Text and Lines plus other classes that act as containers for these 
primitives. 
But there's a problem with this approach: Code that uses these classes must treat 
primitive and container objects differently, even if most of the time the user treats 
them identically. Having to distinguish these objects makes the application more 
complex. The Composite pattern describes how to use recursive composition so 
that clients don't have to make this distinction. 

The key to the Composite pattern is an abstract class that represents both primi­
tives and their containers. For the graphics system, this class is Graphic. Graphic 
declares operations like Draw that are specific to graphical objects. It also declares 
operations that all composite objects share, such as operations for accessing and 
managing its children. 
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The subclasses Line, Rectangle, and Text (see preceding class diagram) define 
primitive graphical objects. These classes implement Draw to draw lines, rectan­
gles, and text, respectively. Since primitive graphics have no child graphics, none 
of these subclasses implements child-related operations. 

The Picture class defines an aggregate of Graphic objects. Picture implements 
Draw to call Draw on its children, and it implements child-related operations ac­
cordingly. Because the Picture interface conforms to the Graphic interface, Picture 
objects can compose other Pictures recursively. 

The following diagram shows a typical composite object structure of recursively 
composed Graphic objects: 

Applicability 
Use the Composite pattern when 

• you want to represent part-whole hierarchies of objects. 
• you want clients to be able to ignore the difference between compositions of 

objects and individual objects. Clients will treat all objects in the composite 
structure uniformly. 

Structure 
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A typical Composite object structure might look like this: 

Participants 
• Component (Graphic) 

- declares the interface for objects in the composition. 

- implements default behavior for the interface common to all classes, as 
appropriate. 

- declares an interface for accessing and managing its child components. 

- (optional) defines an interface for accessing a component's parent in the 
recursive structure, and implements it if that's appropriate. 

• Leaf (Rectangle, Line, Text, etc.) 

- represents leaf objects in the composition. A leaf has no children. 

- defines behavior for primitive objects in the composition. 

• Composite (Picture) 

- defines behavior for components having children. 

- stores child components. 

- implements child-related operations in the Component interface. 

• Client 
- manipulates objects in the composition through the Component interface. 

Collaborations 
• Clients use the Component class interface to interact with objects in the com­

posite structure. If the recipient is a Leaf, then the request is handled directly. 
If the recipient is a Composite, then it usually forwards requests to its child 
components, possibly performing additional operations before and/or after 
forwarding. 
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Consequences 
The Composite pattern 

• defines class hierarchies consisting of primitive objects and composite ob­
jects. Primitive objects can be composed into more complex objects, which in 
turn can be composed, and so on recursively. Wherever client code expects a 
primitive object, it can also take a composite object. 

• makes the client simple. Clients can treat composite structures and indi­
vidual objects uniformly. Clients normally don't know (and shouldn't care) 
whether they're dealing with a leaf or a composite component. This simplifies 
client code, because it avoids having to write tag-and-case-statement-style 
functions over the classes that define the composition. 

• makes it easier to add new kinds of components. Newly defined Composite 
or Leaf subclasses work automatically with existing structures and client 
code. Clients don't have to be changed for new Component classes. 

• can make your design overly general. The disadvantage of making it easy 
to add new components is that it makes it harder to restrict the components 
of a composite. Sometimes you want a composite to have only certain com­
ponents. With Composite, you can't rely on the type system to enforce those 
constraints for you. You'll have to use run-time checks instead. 

Implementation 
There are many issues to consider when implementing the Composite pattern: 

1. Explicit parent references. Maintaining references from child components to 
their parent can simplify the traversal and management of a composite struc­
ture. The parent reference simplifies moving up the structure and deleting 
a component. Parent references also help support the Chain of Responsibil­
ity (223) pattern. 
The usual place to define the parent reference is in the Component class. 
Leaf and Composite classes can inherit the reference and the operations that 
manage it. 
With parent references, it's essential to maintain the invariant that all children 
of a composite have as their parent the composite that in turn has them as 
children. The easiest way to ensure this is to change a component's parent 
only when it's being added or removed from a composite. If this can be 
implemented once in the Add and Remove operations of the Composite 
class, then it can be inherited by all the subclasses, and the invariant will be 
maintained automatically. 

2. Sharing components. It's often useful to share components, for example, to 
reduce storage requirements. But when a component can have no more than 
one parent, sharing components becomes difficult. 
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A possible solution is for children to store multiple parents. But that can lead 
to ambiguities as a request propagates up the structure. The Flyweight (195) 
pattern shows how to rework a design to avoid storing parents altogether. It 
works in cases where children can avoid sending parent requests by exter­
nalizing some or all of their state. 

3. Maximizing the Component interface. One of the goals of the Composite pattern 
is to make clients unaware of the specific Leaf or Composite classes they're 
using. To attain this goal, the Component class should define as many com­
mon operations for Composite and Leaf classes as possible. The Component 
class usually provides default implementations for these operations, and 
Leaf and Composite subclasses will override them. 
However, this goal will sometimes conflict with the principle of class hierar­
chy design that says a class should only define operations that are meaningful 
to its subclasses. There are many operations that Component supports that 
don't seem to make sense for Leaf classes. How can Component provide a 
default implementation for them? 
Sometimes a little creativity shows how an operation that would appear to 
make sense only for Composites can be implemented for all Components by 
moving it to the Component class. For example, the interface for accessing 
children is a fundamental part of a Composite class but not necessarily Leaf 
classes. But if we view a Leaf as a Component that never has children, then we 
can define a default operation for child access in the Component class that 
never returns any children. Leaf classes can use the default implementation, 
but Composite classes will reimplement it to return their children. 
The child management operations are more troublesome and are discussed 
in the next item. 

4. Declaring the child management operations. Although the Composite class imple­
ments the Add and Remove operations for managing children, an important 
issue in the Composite pattern is which classes declare these operations in the 
Composite class hierarchy. Should we declare these operations in the Com­
ponent and make them meaningful for Leaf classes, or should we declare 
and define them only in Composite and its subclasses? 
The decision involves a trade-off between safety and transparency: 

• Defining the child management interface at the root of the class hierarchy 
gives you transparency, because you can treat all components uniformly. 
It costs you safety, however, because clients may try to do meaningless 
things like add and remove objects from leaves. 

• Defining child management in the Composite class gives you safety, 
because any attempt to add or remove objects from leaves will be caught 
at compile-time in a statically typed language like C++. But you lose 
transparency, because leaves and composites have different interfaces. 
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We have emphasized transparency over safety in this pattern. If you opt for 
safety, then at times you may lose type information and have to convert a 
component into a composite. How can you do this without resorting to a 
type-unsafe cast? 
One approach is to declare an operation Composite* GetComposite () in 
the Component class. Component provides a default operation that returns 
a null pointer. The Composite class redefines this operation to return itself 
through the this pointer: 

class Composite; 

class Component { 
public: 

I I . . .  
virtual Composite* GetComposite() { return 0; } 

} ; 

class Composite : public Component { 
public: 

void Add(Component*); 
I I . . .  
virtual Composite* GetComposite() { return this; } 

} ; 

class Leaf : public Component { 
I I . . .  

} ; 

GetComposite lets you query a component to see if it's a composite. You 
can perform Add and Remove safely on the composite it returns. 

Composite* aComposite = new Composite; 
Leaf* aLeaf = new Leaf; 

Component * aComponent; 
Composite* test; 

aComponent = aComposite; 
if (test = aComponent->GetComposite()) { 

test->Add(new Leaf); 
} 

aComponent = aLeaf; 

if (test = aComponent->GetComposite()) { 
test->Add(new Leaf); // will not add leaf 

} 

Similar tests for a Composite can be done using the C++ dynamic_cast 
construct. 
Of course, the problem here is that we don't treat all components uniformly. 
We have to revert to testing for different types before taking the appropriate 
action. 
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The only way to provide transparency is to define default Add and Remove 
operations in Component. That creates a new problem: There's no way to im­
plement Component: : Add without introducing the possibility of it failing. 
You could make it do nothing, but that ignores an important consideration; 
that is, an attempt to add something to a leaf probably indicates a bug. In 
that case, the Add operation produces garbage. You could make it delete its 
argument, but that might not be what clients expect. 
Usually it's better to make Add and Remove fail by default (perhaps by 
raising an exception) if the component isn't allowed to have children or if 
the argument of Remove isn't a child of the component, respectively. 
Another alternative is to change the meaning of "remove" slightly. If 
the component maintains a parent reference, then we could redefine 
Component: : Remove to remove itself from its parent. However, there still 
isn't a meaningful interpretation for a corresponding Add. 

5. Should Component implement a list of Components? You might be tempted to 
define the set of children as an instance variable in the Component class 
where the child access and management operations are declared. But putting 
the child pointer in the base class incurs a space penalty for every leaf, even 
though a leaf never has children. This is worthwhile only if there are relatively 
few children in the structure. 

6. Child ordering. Many designs specify an ordering on the children of Com­
posite. In the earlier Graphics example, ordering may reflect front-to-back 
ordering. If Composites represent parse trees, then compound statements 
can be instances of a Composite whose children must be ordered to reflect 
the program. 
When child ordering is an issue, you must design child access and man­
agement interfaces carefully to manage the sequence of children. The Itera­
tor (257) pattern can guide you in this. 

7. Caching to improve performance. If you need to traverse or search compositions 
frequently, the Composite class can cache traversal or search information 
about its children. The Composite can cache actual results or just information 
that lets it short-circuit the traversal or search. For example, the Picture class 
from the Motivation example could cache the bounding box of its children. 
During drawing or selection, this cached bounding box lets the Picture avoid 
drawing or searching when its children aren't visible in the current window. 
Changes to a component will require invalidating the caches of its parents. 
This works best when components know their parents. So if you're using 
caching, you need to define an interface for telling composites that their 
caches are invalid. 

8. Who should delete components? In languages without garbage collection, it's 
usually best to make a Composite responsible for deleting its children when 
it's destroyed. An exception to this rule is when Leaf objects are immutable 
and thus can be shared. 
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9. What's the best data structure for storing components? Composites may use a 
variety of data structures to store their children, including linked lists, trees, 
arrays, and hash tables. The choice of data structure depends (as always) on 
efficiency. In fact, it isn't even necessary to use a general-purpose data struc­
ture at all. Sometimes composites have a variable for each child, although 
this requires each subclass of Composite to implement its own management 
interface. See Interpreter (243) for an example. 

Sample Code 
Equipment such as computers and stereo components are often organized into 
part-whole or containment hierarchies. For example, a chassis can contain drives 
and planar boards, a bus can contain cards, and a cabinet can contain chassis, 
buses, and so forth. Such structures can be modeled naturally with the Composite 
pattern. 
Equipment class defines an interface for all equipment in the part-whole hierar­
chy. 

class Equipment { 
public: 

virtual "Equipment(); 

const char* Name() { return _name; } 

virtual Watt Power(); 
virtual Currency NetPrice(); 
virtual Currency DiscountPrice(); 

virtual void Add(Equipment*); 
virtual void Remove(Equipment*); 
virtual Iterator<Equipment*>* Createlterator(); 

protected: 
Equipment(const char*); 

private: 
const char* _name; 

} ; 

Equipment declares operations that return the attributes of a piece of equipment, 
like its power consumption and cost. Subclasses implement these operations for 
specific kinds of equipment. Equipment also declares a Createlterator op­
eration that returns an Iterator (see Appendix C) for accessing its parts. The 
default implementation for this operation returns a Nulllterator, which iterates 
over the empty set. 
Subclasses of Equipment might include Leaf classes that represent disk drives, 
integrated circuits, and switches: 
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class FloppyDisk : public Equipment { 
public: 

FloppyDisk(const char*); 
virtual "FloppyDisk(); 

virtual Watt Power(); 
virtual Currency NetPriceO; 
virtual Currency DiscountPrice(); 

} ; 

Compos i teEquipment is the base class for equipment that contains other equip­
ment. It's also a subclass of Equipment. 

class CompositeEquipment : public Equipment { 
public: 

virtual "CompositeEquipment(); 

virtual Watt Power(); 
virtual Currency NetPriceO; 
virtual Currency DiscountPrice(); 

virtual void Add(Equipment*); 
virtual void Remove(Equipment*); 
virtual Iterator<Equipment*>* Createlterator(); 

protected: 
CompositeEquipment(const char*); 

private: 
List<Equipment*> _equipment; 

} ; 

CompositeEquipment defines the operations for accessing and managing 
subequipment. The operations Add and Remove insert and delete equip­
ment from the list of equipment stored in the .equipment member. The 
operation Createlterator returns an iterator (specifically, an instance of 
Listlterator) that will traverse this list. 
A default implementation of NetPrice might use Createlterator to sum the 
net prices of the subequipment2: 

Currency CompositeEquipment::NetPrice () { 
Iterator<Equipment*>* i = Createlterator(); 
Currency total = 0; 

for (i->First(); !i->IsDone(); i->Next()) { 
total += i->CurrentItem()->NetPrice(); 

} 
delete i; 
return total; 

} 

2 It's easy to forget to delete the iterator once you're done with it. The Iterator pattern shows how to guard 
against such bugs on page 266. 
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Now we can represent a computer chassis as a subclass of Compos i teEquipment 
called Chassis. Chassis inherits the child-related operations from Com­
pos i teEquipment. 

class Chassis : public CompositeEquipment { 
public: 

Chassis(const char*); 
virtual "Chassis(); 

virtual Watt Power(); 
virtual Currency NetPriceO; 
virtual Currency DiscountPrice(); 

} ; 

We can define other equipment containers such as Cabinet and Bus in a similar 
way. That gives us everything we need to assemble equipment into a (pretty 
simple) personal computer: 

Cabinet* cabinet = new Cabinet("PC Cabinet"); 
Chassis* chassis = new Chassis("PC Chassis"); 

cabinet->Add(chassis); 

Bus* bus = new Bus("MCA Bus"); 
bus->Add(new Card("16Mbs Token Ring")); 

chassis->Add(bus); 
chassis->Add(new FloppyDisk("3.5in Floppy")); 

cout « "The net price is " << chassis->NetPrice() << endl; 

Known Uses 
Examples of the Composite pattern can be found in almost all object-oriented 
systems. The original View class of Smalltalk Model/View/Controller [KP88] 
was a Composite, and nearly every user interface toolkit or framework has fol­
lowed in its steps, including ET++ (with its VObjects [WGM88]) and Interviews 
(Styles [LCI+92], Graphics [VL88], and Glyphs [CL90]). It's interesting to note 
that the original View of Model/View/Controller had a set of subviews; in other 
words, View was both the Component class and the Composite class. Release 4.0 
of Small talk-80 revised Model/View/Controller with a VisualComponent class 
that has subclasses View and CompositeView. 

The RTL Smalltalk compiler framework [JML92] uses the Composite pattern ex­
tensively. RTLExpression is a Component class for parse trees. It has subclasses, 
such as BinaryExpression, that contain child RTLExpression objects. These classes 
define a composite structure for parse trees. RegisterTransfer is the Component 
class for a program's intermediate Single Static Assignment (SSA) form. Leaf 
subclasses of RegisterTransfer define different static assignments such as 
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• primitive assignments that perform an operation on two registers and assign 
the result to a third; 

• an assignment with a source register but no destination register, which indi­
cates that the register is used after a routine returns; and 

• an assignment with a destination register but no source, which indicates that 
the register is assigned before the routine starts. 

Another subclass, RegisterTransferSet, is a Composite class for representing as­
signments that change several registers at once. 
Another example of this pattern occurs in the financial domain, where a portfolio 
aggregates individual assets. You can support complex aggregations of assets by 
implementing a portfolio as a Composite that conforms to the interface of an 
individual asset [BE93]. 
The Command (233) pattern describes how Command objects can be composed 
and sequenced with a MacroCommand Composite class. 

Related Patterns 
Often the component-parent link is used for a Chain of Responsibility (223). 

Decorator (175) is often used with Composite. When decorators and composites 
are used together, they will usually have a common parent class. So decorators 
will have to support the Component interface with operations like Add, Remove, 
and GetChild. 
Flyweight (195) lets you share components, but they can no longer refer to their 
parents. 

Iterator (257) can be used to traverse composites. 

Visitor (331) localizes operations and behavior that would otherwise be distributed 
across Composite and Leaf classes. 
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DECORATOR Object Structural 

Intent 
Attach additional responsibilities to an object dynamically. Decorators provide a 
flexible alternative to subclassing for extending functionality. 

Also Known As 
Wrapper 

Motivation 
Sometimes we want to add responsibilities to individual objects, not to an entire 
class. A graphical user interface toolkit, for example, should let you add properties 
like borders or behaviors like scrolling to any user interface component. 

One way to add responsibilities is with inheritance. Inheriting a border from 
another class puts a border around every subclass instance. This is inflexible, 
however, because the choice of border is made statically. A client can't control 
how and when to decorate the component with a border. 

A more flexible approach is to enclose the component in another object that adds 
the border. The enclosing object is called a decorator. The decorator conforms to 
the interface of the component it decorates so that its presence is transparent to the 
component's clients. The decorator forwards requests to the component and may 
perform additional actions (such as drawing a border) before or after forwarding. 
Transparency lets you nest decorators recursively, thereby allowing an unlimited 
number of added responsibilities. 

4 

Some applications would benefit 
from using objects to model every 
aspect of their functionality, but 
a naive design approach would lie 
prohibitively expensive. 

For example, most document ed­
itors modularize their text format­
ting and editing facilities to some-
extent. However, they invariably 
stop short of using objects to 

I 
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For example, suppose we have a Text View object that displays text in a window. 
TextView has no scroll bars by default, because we might not always need them. 
When we do, we can use a ScrollDecorator to add them. Suppose we also want to 
add a thick black border around the TextView. We can use a BorderDecorator to 
add this as well. We simply compose the decorators with the TextView to produce 
the desired result. 
The following object diagram shows how to compose a TextView object with 
BorderDecorator and ScrollDecorator objects to produce a bordered, scrollable 
text view: 

aBorderDecorator f N. 
a Scroll Decorator 

f N. 
a Scroll Decorator 

aTextVlew aTextVlew 

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an 
abstract class for visual components that decorate other visual components. 

VisualComponent is the abstract class for visual objects. It defines their drawing 
and event handling interface. Note how the Decorator class simply forwards 
draw requests to its component, and how Decorator subclasses can extend this 
operation. 
Decorator subclasses are free to add operations for specific functionality. For ex­
ample, ScrollDecorator's ScrollTo operation lets other objects scroll the interface 
if they know there happens to be a ScrollDecorator object in the interface. The 
important aspect of this pattern is that it lets decorators appear anywhere a Vi­
sualComponent can. That way clients generally can't tell the difference between 
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a decorated component and an undecorated one, and so they don't depend at all 
on the decoration. 

Applicability 
Use Decorator 

• to add responsibilities to individual objects dynamically and transparently, 
that is, without affecting other objects. 

• for responsibilities that can be withdrawn. 

• when extension by subclassing is impractical. Sometimes a large number 
of independent extensions are possible and would produce an explosion of 
subclasses to support every combination. Or a class definition may be hidden 
or otherwise unavailable for subclassing. 

Structure 

Participants 
• Component (VisualComponent) 

- defines the interface for objects that can have responsibilities added to 
them dynamically. 

• ConcreteComponent (TextView) 

- defines an object to which additional responsibilities can be attached. 

• Decorator 

- maintains a reference to a Component object and defines an interface that 
conforms to Component's interface. 



178 STRUCTURAL PATTERNS CHAPTER 4 

• ConcreteDecorator (BorderDecorator, ScrollDecorator) 

- adds responsibilities to the component. 

Collaborations 
• Decorator forwards requests to its Component object. It may optionally per­

form additional operations before and after forwarding the request. 

Consequences 
The Decorator pattern has at least two key benefits and two liabilities: 

1. More flexibility than static inheritance. The Decorator pattern provides a more 
flexible way to add responsibilities to objects than can be had with static 
(multiple) inheritance. With decorators, responsibilities can be added and 
removed at run-time simply by attaching and detaching them. In contrast, 
inheritance requires creating a new class for each additional responsibil­
ity (e.g., BorderedScrollableTextView, BorderedTextView). This gives rise to 
many classes and increases the complexity of a system. Furthermore, provid­
ing different Decorator classes for a specific Component class lets you mix 
and match responsibilities. 
Decorators also make it easy to add a property twice. For example, to give 
a TextView a double border, simply attach two BorderDecorators. Inheriting 
from a Border class twice is error-prone at best. 

2. Avoids feature-laden classes high up in the hierarchy. Decorator offers a pay-
as-you-go approach to adding responsibilities. Instead of trying to support 
all foreseeable features in a complex, customizable class, you can define 
a simple class and add functionality incrementally with Decorator objects. 
Functionality can be composed from simple pieces. As a result, an application 
needn't pay for features it doesn't use. It's also easy to define new kinds of 
Decorators independently from the classes of objects they extend, even for 
unforeseen extensions. Extending a complex class tends to expose details 
unrelated to the responsibilities you're adding. 

3. A decorator and its component aren't identical. A decorator acts as a transparent 
enclosure. But from an object identity point of view, a decorated component 
is not identical to the component itself. Hence you shouldn't rely on object 
identity when you use decorators. 

4. Lots of little objects. A design that uses Decorator often results in systems 
composed of lots of little objects that all look alike. The objects differ only 
in the way they are interconnected, not in their class or in the value of 
their variables. Although these systems are easy to customize by those who 
understand them, they can be hard to learn and debug. 
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Implementation 
Several issues should be considered when applying the Decorator pattern: 

1. Interface conformance. A decorator object's interface must conform to the inter­
face of the component it decorates. ConcreteDecorator classes must therefore 
inherit from a common class (at least in C++). 

2. Omitting the abstract Decorator class. There's no need to define an abstract 
Decorator class when you only need to add one responsibility. That's often 
the case when you're dealing with an existing class hierarchy rather than 
designing a new one. In that case, you can merge Decorator's responsibility 
for forwarding requests to the component into the ConcreteDecorator. 

3. Keeping Component classes lightweight. To ensure a conforming interface, com­
ponents and decorators must descend from a common Component class. 
It's important to keep this common class lightweight; that is, it should fo­
cus on defining an interface, not on storing data. The definition of the data 
representation should be deferred to subclasses; otherwise the complexity 
of the Component class might make the decorators too heavyweight to use 
in quantity. Putting a lot of functionality into Component also increases the 
probability that concrete subclasses will pay for features they don't need. 

4. Changing the skin of an object versus changing its guts. We can think of a deco­
rator as a skin over an object that changes its behavior. An alternative is to 
change the object's guts. The Strategy (315) pattern is a good example of a 
pattern for changing the guts. 
Strategies are a better choice in situations where the Component class is 
intrinsically heavyweight, thereby making the Decorator pattern too costly 
to apply. In the Strategy pattern, the component forwards some of its behavior 
to a separate strategy object. The Strategy pattern lets us alter or extend the 
component's functionality by replacing the strategy object. 
For example, we can support different border styles by having the component 
defer border-drawing to a separate Border object. The Border object is a 
Strategy object that encapsulates a border-drawing strategy. By extending 
the number of strategies from just one to an open-ended list, we achieve the 
same effect as nesting decorators recursively. 
In MacApp 3.0 [App89] and Bedrock [Sym93a], for example, graphical com­
ponents (called "views") maintain a list of "adorner" objects that can attach 
additional adornments like borders to a view component. If a view has any 
adomers attached, then it gives them a chance to draw additional embellish­
ments. MacApp and Bedrock must use this approach because the View class 
is heavyweight. It would be too expensive to use a full-fledged View just to 
add a border. 
Since the Decorator pattern only changes a component from the outside, the 
component doesn't have to know anything about its decorators; that is, the 
decorators are transparent to the component: 



180 STRUCTURAL PATTERNS CHAPTER 4 

\aDecorator aDecorator . aDecorator . raComponent ^ . raComponent ^ 

-

decorator-extended functionality 

With strategies, the component itself knows about possible extensions. So it 
has to reference and maintain the corresponding strategies: 

strategy-extended functionality 

The Strategy-based approach might require modifying the component to 
accommodate new extensions. On the other hand, a strategy can have its 
own specialized interface, whereas a decorator's interface must conform to 
the component's. A strategy for rendering a border, for example, need only 
define the interface for rendering a border (Draw Border, GetWidth, etc.), 
which means that the strategy can be lightweight even if the Component 
class is heavyweight. 
MacApp and Bedrock use this approach for more than just adorning views. 
They also use it to augment the event-handling behavior of objects. In both 
systems, a view maintains a list of "behavior" objects that can modify and 
intercept events. The view gives each of the registered behavior objects a 
chance to handle the event before nonregistered behaviors, effectively over­
riding them. You can decorate a view with special keyboard-handling sup­
port, for example, by registering a behavior object that intercepts and handles 
key events. 

Sample Code 
The following code shows how to implement user interface decorators in C++. 
We'll assume there's a Component class called VisualComponent:. 

class VisualComponent { 
public: 

VisualComponent(); 

virtual void Draw(); 
virtual void Resized; 
H  . . .  

} ;  
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We define a subclass of VisualComponent called Decorator, which we'll sub­
class to obtain different decorations. 

class Decorator : public VisualComponent { 
public: 

Decorator(VisualComponent*); 

virtual void DrawO; 
virtual void Resize 0; 
I I . . .  

private: 
VisualComponent* _component; 

} ; 

Decorator decorates the VisualComponent referenced by the .component 
instance variable, which is initialized in the constructor. For each operation in 
VisualComponent's interface, Decorator defines a default implementation 
that passes the request on to .component: 

void Decorator::Draw () { 
_component->Draw(); 

} 

void Decorator::Resize () { 
_component->Resize(); 

} 

Subclasses of Decorator define specific decorations. For example, the class 
BorderDecorator adds a border to its enclosing component. Border-
Decorator is a subclass of Decorator that overrides the Draw operation to 
draw the border. BorderDecorator also defines a private DrawBorder helper 
operation that does the drawing. The subclass inherits all other operation imple­
mentations from Decorator. 

class BorderDecorator : public Decorator { 
public: 

BorderDecorator(VisualComponent*, int borderWidth); 

virtual void DrawO; 
private: 

void DrawBorder(int); 
private: 

int _width; 
) ; 

void BorderDecorator::Draw () { 
Decorator: :DrawO ; 
DrawBorder(_width); 

) 

« 
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A similar implementation would follow for ScrollDecorator and Drop-
ShadowDecorator, which would add scrolling and drop shadow capabilities 
to a visual component. 
Now we can compose instances of these classes to provide different decorations. 
The following code illustrates how we can use decorators to create a bordered 
scrollable TextView. 
First, we need a way to put a visual component into a window object. We'll assume 
our Window class provides a SetContents operation for this purpose: 

void Window::SetContents (VisualComponent* contents) { 

I I . . .  
} 

Now we can create the text view and a window to put it in: 

Window* window = new Window; 
TextView* textView = new TextView; 

TextView is a VisualComponent, which lets us put it into the window: 

window->SetContents(textView); 

But we want a bordered and scrollable TextView. So we decorate it accordingly 
before putting it in the window. 

window->SetContents( 
new BorderDecorator( 

new ScrollDecorator(textView), 1 
) 

) ; 

Because Window accesses its contents through the VisualComponent interface, 
it's unaware of the decorator's presence. You, as the client, can still keep track of 
the text view if you have to interact with it directly, for example, when you need 
to invoke operations that aren't part of the VisualComponent interface. Clients 
that rely on the component's identity should refer to it directly as well. 

Known Uses 
Many object-oriented user interface toolkits use decorators to add graphi­
cal embellishments to widgets. Examples include Interviews [LVC89, LCI+92], 
ET++ [WGM88], and the ObjectWorks\Smalltalk class library [Par90]. More ex­
otic applications of Decorator are the DebuggingGlyph from Interviews and the 
PassivityWrapper from ParcPlace Smalltalk. A DebuggingGlyph prints out de­
bugging information before and after it forwards a layout request to its compo­
nent. This trace information can be used to analyze and debug the layout behavior 
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of objects in a complex composition. The PassivityWrapper can enable or disable 
user interactions with the component. 
But the Decorator pattern is by no means limited to graphical user interfaces, as the 
following example (based on the ET++ streaming classes [WGM88]) illustrates. 
Streams are a fundamental abstraction in most I/O facilities. A stream can provide 
an interface for converting objects into a sequence of bytes or characters. That 
lets us transcribe an object to a file or to a string in memory for retrieval later. A 
straightforward way to do this is to define an abstract Stream class with subclasses 
MemoryStream and FileStream. But suppose we also want to be able to do the 
following: 

• Compress the stream data using different compression algorithms (run-
length encoding, Lempel-Ziv, etc.). 

• Reduce the stream data to 7-bit ASCII characters so that it can be transmitted 
over an ASCII communication channel. 

The Decorator pattern gives us an elegant way to add these responsibilities to 
streams. The diagram below shows one solution to the problem: 

The Stream abstract class maintains an internal buffer and provides operations for 
storing data onto the stream (Putlnt, PutString). Whenever the buffer is full, Stream 
calls the abstract operation HandleBufferFull, which does the actual data transfer. 
The FileStream version of this operation overrides this operation to transfer the 
buffer to a file. 
The key class here is StreamDecorator, which maintains a reference to a com­
ponent stream and forwards requests to it. StreamDecorator subclasses override 
HandleBufferFull and perform additional actions before calling StreamDecora­
tor's HandleBufferFull operation. 



184 STRUCTURAL PATTERNS CHAPTER 4 

For example, the CompressingStream subclass compresses the data, and the 
ASCII7Stream converts the data into 7-bit ASCII. Now, to create a FileStream 
that compresses its data and converts the compressed binary data to 7-bit ASCII, 
we decorate a FileStream with a CompressingStream and an ASCII7Stream: 

Stream* aStream = new CompressingStream( 
new ASCI17Stream( 

new FileStream("aFileName") 
) 

) ; 

aStream->PutInt(12); 
aStream->PutString("aString"); 

Related Patterns 
Adapter (139): A decorator is different from an adapter in that a decorator only 
changes an object's responsibilities, not its interface; an adapter will give an object 
a completely new interface. 

Composite (163): A decorator can be viewed as a degenerate composite with only 
one component. However, a decorator adds additional responsibilities—it isn't 
intended for object aggregation. 

Strategy (315): A decorator lets you change the skin of an object; a strategy lets 
you change the guts. These are two alternative ways of changing an object. 
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FACADE Object Structural 

Intent 
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a 
higher-level interface that makes the subsystem easier to use. 

Motivation 
Structuring a system into subsystems helps reduce complexity. A common design 
goal is to minimize the communication and dependencies between subsystems. 
One way to achieve this goal is to introduce a facade object that provides a single, 
simplified interface to the more general facilities of a subsystem. 

Consider for example a programming environment that gives applications access 
to its compiler subsystem. This subsystem contains classes such as Scanner, Parser, 
ProgramNode, BytecodeStream, and ProgramNodeBuilder that implement the 
compiler. Some specialized applications might need to access these classes directly. 
But most clients of a compiler generally don't care about details like parsing and 
code generation; they merely want to compile some code. For them, the powerful 
but low-level interfaces in the compiler subsystem only complicate their task. 

To provide a higher-level interface that can shield clients from these classes, the 
compiler subsystem also includes a Compiler class. This class defines a unified 
interface to the compiler's functionality. The Compiler class acts as a facade: It 
offers clients a single, simple interface to the compiler subsystem. It glues together 
the classes that implement compiler functionality without hiding them completely. 
The compiler facade makes life easier for most programmers without hiding the 
lower-level functionality from the few that need it. 
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Compiler 

compiler 
subsystem 
classes 

Stream 

BytecodeStream 

CompileQ 

CodeGenerator •* 

Scanner -h 

Parser 

-*• ProgramNodeBuilder 

Token Token 

Symbol Symbol 

ProgramNode 

StatementNode 

StackMachineCodeGenerator RISCCodeGenerator 

ExpressionNode 

VariableNode 

Applicability 
Use the Facade pattern when 

• you want to provide a simple interface to a complex subsystem. Subsystems 
often get more complex as they evolve. Most patterns, when applied, result 
in more and smaller classes. This makes the subsystem more reusable and 
easier to customize, but it also becomes harder to use for clients that don't 
need to customize it. A facade can provide a simple default view of the 
subsystem that is good enough for most clients. Only clients needing more 
customizability will need to look beyond the facade. 

• there are many dependencies between clients and the implementation classes 
of an abstraction. Introduce a facade to decouple the subsystem from clients 
and other subsystems, thereby promoting subsystem independence and 
portability. 

• you want to layer your subsystems. Use a facade to define an entry point to 
each subsystem level. If subsystems are dependent, then you can simplify 
the dependencies between them by making them communicate with each 
other solely through their facades. 
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Structure 

Participants 
• Facade (Compiler) 

- knows which subsystem classes are responsible for a request. 

- delegates client requests to appropriate subsystem objects. 

• subsystem classes (Scanner, Parser, ProgramNode, etc.) 

- implement subsystem functionality. 

- handle work assigned by the Facade object. 

- have no knowledge of the facade; that is, they keep no references to it. 

Collaborations 
• Clients communicate with the subsystem by sending requests to Facade, which 

forwards them to the appropriate subsystem object(s). Although the subsystem 
objects perform the actual work, the facade may have to do work of its own to 
translate its interface to subsystem interfaces 

• Clients that use the facade don't have to access its subsystem objects directly. 

Consequences 
The Facade pattern offers the following benefits: 

1. It shields clients from subsystem components, thereby reducing the number 
of objects that clients deal with and making the subsystem easier to use. 

2. It promotes weak coupling between the subsystem and its clients. Often the 
components in a subsystem are strongly coupled. Weak coupling lets you 
vary the components of the subsystem without affecting its clients. Facades 
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help layer a system and the dependencies between objects. They can elimi­
nate complex or circular dependencies. This can be an important consequence 
when the client and the subsystem are implemented independently. 
Reducing compilation dependencies is vital in large software systems. You 
want to save time by minimizing recompilation when subsystem classes 
change. Reducing compilation dependencies with facades can limit the re-
compilation needed for a small change in an important subsystem. A facade 
can also simplify porting systems to other platforms, because it's less likely 
that building one subsystem requires building all others. 

3. It doesn't prevent applications from using subsystem classes if they need to. 
Thus you can choose between ease of use and generality. 

Implementation 
Consider the following issues when implementing a facade: 

1. Reducing client-subsystem coupling. The coupling between clients and the sub­
system can be reduced even further by making Facade an abstract class 
with concrete subclasses for different implementations of a subsystem. Then 
clients can communicate with the subsystem through the interface of the ab­
stract Facade class. This abstract coupling keeps clients from knowing which 
implementation of a subsystem is used. 
An alternative to subclassing is to configure a Facade object with different 
subsystem objects. To customize the facade, simply replace one or more of 
its subsystem objects. 

2. Public versus private subsystem classes. A subsystem is analogous to a class in 
that both have interfaces, and both encapsulate something—a class encapsu­
lates state and operations, while a subsystem encapsulates classes. And just 
as it's useful to think of the public and private interface of a class, we can 
think of the public and private interface of a subsystem. 
The public interface to a subsystem consists of classes that all clients can 
access; the private interface is just for subsystem extenders. The Facade class 
is part of the public interface, of course, but it's not the only part. Other 
subsystem classes are usually public as well. For example, the classes Parser 
and Scanner in the compiler subsystem are part of the public interface. 
Making subsystem classes private would be useful, but few object-oriented 
languages support it. Both C++ and Smalltalk traditionally have had a global 
name space for classes. Recently, however, the C++ standardization commit­
tee added name spaces to the language [Str94], which will let you expose just 
the public subsystem classes. 

Sample Code 
Let's take a closer look at how to put a facade on a compiler subsystem. 
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The compiler subsystem defines a BytecodeStream class that implements a stream 
of Bytecode objects. A Bytecode object encapsulates a bytecode, which can 
specify machine instructions. The subsystem also defines a Token class for objects 
that encapsulate tokens in the programming language. 

The Scanner class takes a stream of characters and produces a stream of tokens, 
one token at a time. 

class Scanner { 
public: 

Scanner(istream&); 
virtual "Scanner(); 

virtual Token& Scan(); 
private: 

istream& _inputStream; 
} ; 

The class Parser uses a ProgramNodeBuilder to construct a parse tree from a 
Scanner's tokens. 

class Parser { 
public: 

Parser(); 
virtual "Parser(); 

virtual void Parse(Scanner&, ProgramNodeBuilder&); 
} ; 

Parser calls back on ProgramNodeBuilder to build the parse tree incremen­
tally. These classes interact according to the Builder (97) pattern. 

class ProgramNodeBuilder { 
public: 

ProgramNodeBuilder(); 

virtual ProgramNode* NewVariable( 
char* variableName 

) const; 

virtual ProgramNode* NewAssignment( 
ProgramNode* variable, ProgramNode* expression 

) const; 

virtual ProgramNode* NewReturnStatement( 
ProgramNode* value 

) const; 

virtual ProgramNode* NewCondition( 
ProgramNode* condition, 
ProgramNode* truePart, ProgramNode* falsePart 

) const; 
I I . . .  
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ProgramNode* GetRootNode() ; 

private: 
ProgramNode* _node; 

} ;  

The parse tree is made up of instances of ProgramNode subclasses such as 
StatementNode, ExpressionNode, and so forth. The ProgramNode hierarchy 
is an example of the Composite (163) pattern. ProgramNode defines an interface 
for manipulating the program node and its children, if any. 

class ProgramNode { 
public: 

// program node manipulation 
virtual void GetSourcePosition(int& line, int& index); 

// ... 

// child manipulation 
virtual void Add(ProgramNode*); 
virtual void Remove(ProgramNode*); 

/ /  . . .  

virtual void Traverse(CodeGenerator&); 
protected: 

ProgramNode(); 
} ; 

The Traverse operation takes a CodeGenerator object. ProgramNode sub­
classes use this object to generate machine code in the form of By tec ode objects 
on a BytecodeStream. The class CodeGenerator is a visitor (see Visitor (331)). 

class CodeGenerator { 
public: 

virtual void Visit(StatementNode*); 
virtual void Visit(ExpressionNode*); 
II ... 

protected: 
CodeGenerator (BytecodeStreamfc) ; 

protected: 
BytecodeStreamSc _output; 

) ; 

CodeGenerator has subclasses, for example, StackMachineCodeGenerator 
and RISCCodeGenerator, that generate machine code for different hardware 
architectures. 

Each subclass of ProgramNode implements Traverse to call Traverse on its 
child ProgramNode objects. In turn, each child does the same for its children, and 
so on recursively. For example, ExpressionNode defines Traverse as follows: 
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void ExpressionNode::Traverse (CodeGenerator& eg) { 
eg.Visit(this); 

ListIterator<ProgramNode*> i(_children); 

for (i.FirstO; !i.IsDone(); i.NextO) { 
i.Currentltem()->Traverse(eg); 

} 
} 

The classes we've discussed so far make up the compiler subsystem. Now we'll in­
troduce a Compiler class, a facade that puts all these pieces together. Compiler 
provides a simple interface for compiling source and generating code for a par­
ticular machine. 

class Compiler { 
public: 

Compiler(); 

virtual void Compile(istream&, BytecodeStream&); 
} ; 

void Compiler::Compile ( 
istream& input, BytecodeStream& output 

) ( 

Scanner scanner(input); 
ProgramNodeBuilder builder; 
Parser parser; 

parser.Parse(scanner, builder); 

RISCCodeGenerator generator(output); 
ProgramNode* parseTree = builder.GetRootNode(); 
parseTree->Traverse(generator); 

} 

This implementation hard-codes the type of code generator to use so that program­
mers aren't required to specify the target architecture. That might be reasonable if 
there's only ever one target architecture. If that's not the case, then we might want 
to change the Compiler constructor to take a CodeGenerator parameter. Then 
programmers can specify the generator to use when they instantiate Compiler. 
The compiler facade can parameterize other participants such as Scanner and 
ProgramNodeBuilder as well, which adds flexibility, but it also detracts from 
the Facade pattern's mission, which is to simplify the interface for the common 
case. 

Known Uses 
The compiler example in the Sample Code section was inspired by the Object-
Works\Smalltalk compiler system [Par90]. 



192 STRUCTURAL PATTERNS CHAPTER 4 

In the ET++ application framework [WGM88], an application can have built-in 
browsing tools for inspecting its objects at run-time. These browsing tools are 
implemented in a separate subsystem that includes a Facade class called "Pro-
grammingEnvironment." This facade defines operations such as InspectObject 
and InspectClass for accessing the browsers. 

An ET++ application can also forgo built-in browsing support. In that case, Pro-
grammingEnvironment implements these requests as null operations; that is, they 
do nothing. Only the ETProgrammingEnvironment subclass implements these re­
quests with operations that display the corresponding browsers. The application 
has no knowledge of whether a browsing environment is available or not; there's 
abstract coupling between the application and the browsing subsystem. 

The Choices operating system [CIRM93] uses facades to compose many frame­
works into one. The key abstractions in Choices are processes, storage, and ad­
dress spaces. For each of these abstractions there is a corresponding subsystem, 
implemented as a framework, that supports porting Choices to a variety of dif­
ferent hardware platforms. Two of these subsystems have a "representative" (i.e., 
facade). These representatives are FileSystemlnterface (storage) and Domain (ad­
dress spaces). 

For example, the virtual memory framework has Domain as its facade. A Domain 
represents an address space. It provides a mapping between virtual addresses 
and offsets into memory objects, files, or backing store. The main operations on 
Domain support adding a memory object at a particular address, removing a 
memory object, and handling a page fault. 

As the preceding diagram shows, the virtual memory subsystem uses the follow­
ing components internally: 



FACADE 193 

• MemoryObject represents a data store. 

• MemoryObjectCache caches the data of MemoryObjects in physical memory. 
MemoryObjectCache is actually a Strategy (315) that localizes the caching 
policy. 

• AddressTranslation encapsulates the address translation hardware. 

The RepairFault operation is called whenever a page fault interrupt occurs. The 
Domain finds the memory object at the address causing the fault and delegates the 
RepairFault operation to the cache associated with that memory object. Domains 
can be customized by changing their components. 

Related Patterns 
Abstract Factory (87) can be used with Facade to provide an interface for creating 
subsystem objects in a subsystem-independent way. Abstract Factory can also be 
used as an alternative to Facade to hide platform-specific classes. 

Mediator (273) is similar to Facade in that it abstracts functionality of existing 
classes. However, Mediator's purpose is to abstract arbitrary communication be­
tween colleague objects, often centralizing functionality that doesn't belong in 
any one of them. A mediator's colleagues are aware of and communicate with the 
mediator instead of communicating with each other directly. In contrast, a facade 
merely abstracts the interface to subsystem objects to make them easier to use; it 
doesn't define new functionality, and subsystem classes don't know about it. 

Usually only one Facade object is required. Thus Facade objects are often Single­
tons (127). 
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Flyweight object structural 

Intent 
Use sharing to support large numbers of fine-grained objects efficiently. 

Motivation 
Some applications could benefit from using objects throughout their design, but 
a naive implementation would be prohibitively expensive. 

For example, most document editor implementations have text formatting and 
editing facilities that are modularized to some extent. Object-oriented document 
editors typically use objects to represent embedded elements like tables and fig­
ures. However, they usually stop short of using an object for each character in the 
document, even though doing so would promote flexibility at the finest levels in 
the application. Characters and embedded elements could then be treated uni­
formly with respect to how they are drawn and formatted. The application could 
be extended to support new character sets without disturbing other functionality. 
The application's object structure could mimic the document's physical structure. 
The following diagram shows how a document editor can use objects to represent 
characters. 

The drawback of such a design is its cost. Even moderate-sized documents may 
require hundreds of thousands of character objects, which will consume lots of 
memory and may incur unacceptable run-time overhead. The Flyweight pattern 
describes how to share objects to allow their use at fine granularities without 
prohibitive cost. 
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A flyweight is a shared object that can be used in multiple contexts simultaneously. 
The flyweight acts as an independent object in each context—it's indistinguish­
able from an instance of the object that's not shared. Flyweights cannot make 
assumptions about the context in which they operate. The key concept here is the 
distinction between intrinsic and extrinsic state. Intrinsic state is stored in the 
flyweight; it consists of information that's independent of the flyweight's context, 
thereby making it sharable. Extrinsic state depends on and varies with the fly­
weight's context and therefore can't be shared. Client objects are responsible for 
passing extrinsic state to the flyweight when it needs it. 

Flyweights model concepts or entities that are normally too plentiful to represent 
with objects. For example, a document editor can create a flyweight for each letter 
of the alphabet. Each flyweight stores a character code, but its coordinate position 
in the document and its typographic style can be determined from the text layout 
algorithms and formatting commands in effect wherever the character appears. 
The character code is intrinsic state, while the other information is extrinsic. 

Logically there is an object for every occurrence of a given character in the docu­
ment: 

Physically, however, there is one shared flyweight object per character, and it 
appears in different contexts in the document structure. Each occurrence of a par­
ticular character object refers to the same instance in the shared pool of flyweight 
objects: 
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The class structure for these objects is shown next. Glyph is the abstract class for 
graphical objects, some of which may be flyweights. Operations that may depend 
on extrinsic state have it passed to them as a parameter. For example, Draw and 
Intersects must know which context the glyph is in before they can do their job. 

A flyweight representing the letter "a" only stores the corresponding character 
code; it doesn't need to store its location or font. Clients supply the context-
dependent information that the flyweight needs to draw itself. For example, a 
Row glyph knows where its children should draw themselves so that they are 
tiled horizontally. Thus it can pass each child its location in the draw request. 

Because the number of different character objects is far less than the number of 
characters in the document, the total number of objects is substantially less than 
what a naive implementation would use. A document in which all characters ap­
pear in the same font and color will allocate on the order of 100 character objects 
(roughly the size of the ASCII character set) regardless of the document's length. 
And since most documents use no more than 10 different font-color combina­
tions, this number won't grow appreciably in practice. An object abstraction thus 
becomes practical for individual characters. 

Applicability 
The Flyweight pattern's effectiveness depends heavily on how and where it's 
used. Apply the Flyweight pattern when all of the following are true: 

• An application uses a large number of objects. 
• Storage costs are high because of the sheer quantity of objects. 

• Most object state can be made extrinsic. 
• Many groups of objects may be replaced by relatively few shared objects 

once extrinsic state is removed. 
• The application doesn't depend on object identity. Since flyweight objects 

may be shared, identity tests will return true for conceptually distinct objects. 
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Structure 

FlyweightFactory 
flyweights 

Flyweight FlyweightFactory Flyweight 

GetFlyweight(key) 9 Operation(extrinsicState) 

if (flyweight[key] exists) { ^ 
return existing flyweight; 

} else { 
create new flyweight; 
add it to pool of flyweights; 
return the new flyweight; 

A 

ConcreteFlyweight 

Operation(extrinsicState) 

intrinsicState 

UnsharedConcreteFlyweight 

Operation(extrinsicState) 

allState 

Client 

The following object diagram shows how flyweights are shared: 

aClient aCllent 

aFlyweightFactory 

flyweights 

flyweight 
pool 

aConcreteFlyweight 

intrinsicState 

aConcreteFlyweight 

intrinsicState 

Participants 
• Flyweight (Glyph) 

- declares an interface through which flyweights can receive and act on 
extrinsic state. 
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• ConcreteFlyweight (Character) 

- implements the Flyweight interface and adds storage for intrinsic state, 
if any. A ConcreteFlyweight object must be sharable. Any state it stores 
must be intrinsic; that is, it must be independent of the ConcreteFlyweight 
object's context. 

• UnsharedConcreteFlyweight (Row, Column) 

- not all Flyweight subclasses need to be shared. The Flyweight interface 
enables sharing; it doesn't enforce it. It's common for UnsharedConcrete­
Flyweight objects to have ConcreteFlyweight objects as children at some 
level in the flyweight object structure (as the Row and Column classes 
have). 

• FlyweightFactory 

- creates and manages flyweight objects. 

- ensures that flyweights are shared properly. When a client requests a fly­
weight, the FlyweightFactory object supplies an existing instance or creates 
one, if none exists. 

• Client 

- maintains a reference to flyweight(s). 

- computes or stores the extrinsic state of flyweight(s). 

Collaborations 
® State that a flyweight needs to function must be characterized as either intrinsic 

or extrinsic. Intrinsic state is stored in the ConcreteFlyweight object; extrinsic 
state is stored or computed by Client objects. Clients pass this state to the 
flyweight when they invoke its operations. 

• Clients should not instantiate ConcreteFlyweights directly. Clients must obtain 
ConcreteFlyweight objects exclusively from the FlyweightFactory object to 
ensure they are shared properly. 

Consequences 
Flyweights may introduce run-time costs associated with transferring, finding, 
and/or computing extrinsic state, especially if it was formerly stored as intrinsic 
state. However, such costs are offset by space savings, which increase as more 
flyweights are shared. 

Storage savings are a function of several factors: 

• the reduction in the total number of instances that comes from sharing 

• the amount of intrinsic state per object 



200 STRUCTURAL PATTERNS CHAPTER 4 

• whether extrinsic state is computed or stored. 

The more flyweights are shared, the greater the storage savings. The savings 
increase with the amount of shared state. The greatest savings occur when the 
objects use substantial quantities of both intrinsic and extrinsic state, and the 
extrinsic state can be computed rather than stored. Then you save on storage in 
two ways: Sharing reduces the cost of intrinsic state, and you trade extrinsic state 
for computation time. 

The Flyweight pattern is often combined with the Composite (163) pattern to 
represent a hierarchical structure as a graph with shared leaf nodes. A consequence 
of sharing is that flyweight leaf nodes cannot store a pointer to their parent. Rather, 
the parent pointer is passed to the flyweight as part of its extrinsic state. This has 
a major impact on how the objects in the hierarchy communicate with each other. 

Implementation 
Consider the following issues when implementing the Flyweight pattern: 

1. Removing extrinsic state. The pattern's applicability is determined largely by 
how easy it is to identify extrinsic state and remove it from shared objects. 
Removing extrinsic state won't help reduce storage costs if there are as many 
different kinds of extrinsic state as there are objects before sharing. Ideally, 
extrinsic state can be computed from a separate object structure, one with far 
smaller storage requirements. 
In our document editor, for example, we can store a map of typographic 
information in a separate structure rather than store the font and type style 
with each character object. The map keeps track of runs of characters with 
the same typographic attributes. When a character draws itself, it receives 
its typographic attributes as a side-effect of the draw traversal. Because doc­
uments normally use just a few different fonts and styles, storing this infor­
mation externally to each character object is far more efficient than storing it 
internally. 

2. Managing shared objects. Because objects are shared, clients shouldn't instanti­
ate them directly. FlyweightFactory lets clients locate a particular flyweight. 
FlyweightFactory objects often use an associative store to let clients look up 
flyweights of interest. For example, the flyweight factory in the document 
editor example can keep a table of flyweights indexed by character codes. The 
manager returns the proper flyweight given its code, creating the flyweight 
if it does not already exist. 
Sharability also implies some form of reference counting or garbage collection 
to reclaim a flyweight's storage when it's no longer needed. However, neither 
is necessary if the number of flyweights is fixed and small (e.g., flyweights 
for the ASCII character set). In that case, the flyweights are worth keeping 
around permanently. 
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Sample Code 
Returning to our document formatter example, we can define a Glyph base class 
for flyweight graphical objects. Logically, glyphs are Composites (see Compos­
ite (163)) that have graphical attributes and can draw themselves. Here we focus on 
just the font attribute, but the same approach can be used for any other graphical 
attributes a glyph might have. 

class Glyph { 
public: 

virtual ~Glyph(); 

virtual void Draw(Window*, GlyphContext&); 

virtual void SetFont(Font*, GlyphContextfc); 
virtual Font* GetFont(GlyphContext&); 

virtual void First(GlyphContext&); 
virtual void Next(GlyphContext&); 
virtual bool IsDone(GlyphContext&); 
virtual Glyph* Current(GlyphContext&); 

virtual void Insert(Glyph*, GlyphContext&); 
virtual void Remove(GlyphContext&); 

protected: 
Glyph(); 

} ;  

The Character subclass just stores a character code: 

class Character : public Glyph { 
public: 

Character(char); 

virtual void Draw(Window* , GlyphContext&); 
private: 

char _charcode; 
} ; 

To keep from allocating space for a font attribute in every glyph, we'll store 
the attribute extrinsically in a GlyphContext object. GlyphContext acts as a 
repository of extrinsic state. It maintains a compact mapping between a glyph and 
its font (and any other graphical attributes it might have) in different contexts. 
Any operation that needs to know the glyph's font in a given context will have 
a GlyphContext instance passed to it as a parameter. The operation can then 
query the GlyphContext for the font in that context. The context depends on 
the glyph's location in the glyph structure. Therefore Glyph's child iteration 
and manipulation operations must update the GlyphContext whenever they're 
used. 
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class GlyphContext { 
public: 

GlyphContext(); 
virtual ~GlyphContext(); 

virtual void Next(int step = 1); 
virtual void Insert(int quantity = 1); 

virtual Font* GetFont(); 
virtual void SetFont(Font*, int span = 1); 

private: 
int _index; 
BTree* _fonts; 

} ; 

GlyphContext must be kept informed of the current position in the glyph struc­
ture during traversal. GlyphContext: : Next increments .index as the traversal 
proceeds. Glyph subclasses that have children (e.g., Row and Column) must im­
plement Next so that it calls GlyphContext: : Next at each point in the traversal. 

GlyphContext: : GetFont uses the index as a key into a BTree structure that 
stores the glyph-to-font mapping. Each node in the tree is labeled with the length 
of the string for which it gives font information. Leaves in the tree point to a font, 
while interior nodes break the string into substrings, one for each child. 

Consider the following excerpt from a glyph composition: 
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The BTree structure for font information might look like 
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Interior nodes define ranges of glyph indices. BTr ee is updated in response to font 
changes and whenever glyphs are added to or removed from the glyph structure. 
For example, assuming we're at index 102 in the traversal, the following code sets 
the font of each character in the word "expect" to that of the surrounding text 
(that is, timesl2, an instance of Font for 12-point Times Roman): 

GlyphContext gc; 
Font* timesl2 = new Font("Times-Roman-12"); 
Font* timesltalicl2 = new Font("Times-Italic-12") ; 
I I  . . .  

gc.SetFont(timesl2, 6); 

The new BTree structure (with changes shown in black) looks like 
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Suppose we add the word "don't " (including a trailing space) in 12-point Times 
Italic before "expect." The following code informs the gc of this event, assuming 
it is still at index 102: 

gc.Insert(6); 
gc.SetFont(timesltalic!2, 6); 

The BTree structure becomes 

When the GlyphContext is queried for the font of the current glyph, it descends 
the BTree, adding up indices as it goes until it finds the font for the current 
index. Because the frequency of font changes is relatively low, the tree stays small 
relative to the size of the glyph structure. This keeps storage costs down without 
an inordinate increase in look-up time.3 

The last object we need is a FlyweightFactory that creates glyphs and ensures 
they're shared properly. Class GlyphFactory instantiates Character and other 
kinds of glyphs. We only share Character objects; composite glyphs are far less 
plentiful, and their important state (i.e., their children) is intrinsic anyway. 

const int NCHARCODES = 128; 

class GlyphFactory { 
public: 

GlyphFactory(); 
virtual "GlyphFactory(); 

3 Look-up time in this scheme is proportional to the font change frequency. Worst-case performance occurs 
when a font change occurs on every character, but that's unusual in practice. 
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virtual Character* CreateCharacter(char); 
virtual Row* CreateRowO; 
virtual Column* CreateColumn(); 
I I  . . .  

private: 
Character* _character[NCHARCODES]; 

} ; 

The .character array contains pointers to Character glyphs indexed by char­
acter code. The array is initialized to zero in the constructor. 

GlyphFactory::GlyphFactory () { 
for (int i = 0; i < NCHARCODES; ++i) { 

_character[i] = 0; 
} 

} 

CreateCharacter looks up a character in the character glyph in the array, and it 
returns the corresponding glyph if it exists. If it doesn't, then CreateCharacter 
creates the glyph, puts it in the array, and returns it: 

Character* GlyphFactory::CreateCharacter (char c) { 
if (!_character[c]) { 

..character [c] = new Character(c); 
} 

return ..character [c] ; 
} 

The other operations simply instantiate a new object each time they're called, 
since noncharacter glyphs won't be shared: 

Row* GlyphFactory::CreateRow () { 
return new Row; 

) 

Column* GlyphFactory::CreateColumn () { 
return new Column; 

) 

We could omit these operations and let clients instantiate unshared glyphs directly. 
However, if we decide to make these glyphs sharable later, we'll have to change 
client code that creates them. 

Known Uses 
The concept of flyweight objects was first described and explored as a design 
technique in Interviews 3.0 [CL90]. Its developers built a powerful document 
editor called Doc as a proof of concept [CL92]. Doc uses glyph objects to repre­
sent each character in the document. The editor builds one Glyph instance for 
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each character in a particular style (which defines its graphical attributes); hence 
a character's intrinsic state consists of the character code and its style informa­
tion (an index into a style table).4 That means only position is extrinsic, making 
Doc fast. Documents are represented by a class Document, which also acts as the 
FlyweightFactory. Measurements on Doc have shown that sharing flyweight char­
acters is quite effective. In a typical case, a document containing 180,000 characters 
required allocation of only 480 character objects. 

ET++ [WGM88] uses flyweights to support look-and-feel independence.5 The 
look-and-feel standard affects the layout of user interface elements (e.g., scroll 
bars, buttons, menus—known collectively as "widgets") and their decorations 
(e.g., shadows, beveling). A widget delegates all its layout and drawing behavior 
to a separate Layout object. Changing the Layout object changes the look and feel, 
even at run-time. 

For each widget class there is a corresponding Layout class (e.g., ScrollbarLayout, 
MenubarLayout, etc.). An obvious problem with this approach is that using sep­
arate layout objects doubles the number of user interface objects: For each user 
interface object there is an additional Layout object. To avoid this overhead, Lay­
out objects are implemented as flyweights. They make good flyweights because 
they deal mostly with defining behavior, and it's easy to pass them what little 
extrinsic state they need to lay out or draw an object. 

The Layout objects are created and managed by Look objects. The Look class is 
an Abstract Factory (87) that retrieves a specific Layout object with operations 
like GetButtonLayout, GetMenuBarLayout, and so forth. For each look-and-feel 
standard there is a corresponding Look subclass (e.g., MotifLook, OpenLook) that 
supplies the appropriate Layout objects. 

By the way, Layout objects are essentially strategies (see Strategy (315)). They are 
an example of a strategy object implemented as a flyweight. 

Related Patterns 
The Flyweight pattern is often combined with the Composite (163) pattern to 
implement a logically hierarchical structure in terms of a directed-acyclic graph 
with shared leaf nodes. 

It's often best to implement State (305) and Strategy (315) objects as flyweights. 

4 In the Sample Code given earlier, style information is made extrinsic, leaving the character code as the 
only intrinsic state. 

6 See Abstract Factory (87) for another approach to look-and-feel independence. 
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PROXY Object Structural 

Intent 
Provide a surrogate or placeholder for another object to control access to it. 

Also Known As 
Surrogate 

Motivation 
One reason for controlling access to an object is to defer the full cost of its creation 
and initialization until we actually need to use it. Consider a document editor 
that can embed graphical objects in a document. Some graphical objects, like large 
raster images, can be expensive to create. But opening a document should be fast, 
so we should avoid creating all the expensive objects at once when the document 
is opened. This isn't necessary anyway, because not all of these objects will be 
visible in the document at the same time. 

These constraints would suggest creating each expensive object on demand, which 
in this case occurs when an image becomes visible. But what do we put in the 
document in place of the image? And how can we hide the fact that the image is 
created on demand so that we don't complicate the editor's implementation? This 
optimization shouldn't impact the rendering and formatting code, for example. 

The solution is to use another object, an image proxy, that acts as a stand-in for 
the real image. The proxy acts just like the image and takes care of instantiating it 
when it's required. 

aTextDocument 

image • 
anlmageProxy 

fileName • 
anlmage 

data 

in memory on disk 

The image proxy creates the real image only when the document editor asks it 
to display itself by invoking its Draw operation. The proxy forwards subsequent 
requests directly to the image. It must therefore keep a reference to the image after 
creating it. 

Let's assume that images are stored in separate files. In this case we can use the 
file name as the reference to the real object. The proxy also stores its extent, that 
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is, its width and height. The extent lets the proxy respond to requests for its size 
from the formatter without actually instantiating the image. 

The following class diagram illustrates this example in more detail. 

DocumentEditor Graphic DocumentEditor Graphic 

Draw() 
GelExtent() 
StoreQ 
Load() 

I 
Image ImageProxy if (image == 0) { ^ 

image = Loadlmage(fileName); 

image->Draw() 

Image 

image 

ImageProxy if (image == 0) { ^ 
image = Loadlmage(fileName); 

image->Draw() 
Draw() 
GetExtentO 
Store() 
Load() 

image Draw() o-
GetExtentO o 
Store() 
LoadQ 

if (image == 0) { ^ 
image = Loadlmage(fileName); 

image->Draw() 
Draw() 
GetExtentO 
Store() 
Load() 

image Draw() o-
GetExtentO o 
Store() 
LoadQ 

if (image == 0) { ^ 
image = Loadlmage(fileName); 

image->Draw() 
Draw() 
GetExtentO 
Store() 
Load() 

Draw() o-
GetExtentO o 
Store() 
LoadQ 

if (image == 0) { ^ 
image = Loadlmage(fileName); 

image->Draw() 
Draw() 
GetExtentO 
Store() 
Load() 

Draw() o-
GetExtentO o 
Store() 
LoadQ 

1 

Draw() 
GetExtentO 
Store() 
Load() 

Draw() o-
GetExtentO o 
Store() 
LoadQ 

1 
1 if (image == 0) { 

return extent; 
} else { 

return image->GetExtent(); 
) 

Draw() 
GetExtentO 
Store() 
Load() 

Draw() o-
GetExtentO o 
Store() 
LoadQ if (image == 0) { 

return extent; 
} else { 

return image->GetExtent(); 
) 

imagelmp 
extent 

fileName 
extent 

if (image == 0) { 
return extent; 

} else { 
return image->GetExtent(); 

) 

The document editor accesses embedded images through the interface defined by 
the abstract Graphic class. ImageProxy is a class for images that are created on 
demand. ImageProxy maintains the file name as a reference to the image on disk. 
The file name is passed as an argument to the ImageProxy constructor. 

ImageProxy also stores the bounding box of the image and a reference to the 
real Image instance. This reference won't be valid until the proxy instantiates 
the real image. The Draw operation makes sure the image is instantiated before 
forwarding it the request. GetExtent forwards the request to the image only if it's 
instantiated; otherwise ImageProxy returns the extent it stores. 

Applicability 
Proxy is applicable whenever there is a need for a more versatile or sophisticated 
reference to an object than a simple pointer. Here are several common situations 
in which the Proxy pattern is applicable: 

1. A remote proxy provides a local representative for an object in a different 
address space. NEXTSTEP [Add94] uses the class NXProxy for this purpose. 
Coplien [Cop92] calls this kind of proxy an "Ambassador." 

2. A virtual proxy creates expensive objects on demand. The ImageProxy de­
scribed in the Motivation is an example of such a proxy. 

3. A protection proxy controls access to the original object. Protection proxies 
are useful when objects should have different access rights. For example, 
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KernelProxies in the Choices operating system [CIRM93] provide protected 
access to operating system objects. 

4. A smart reference is a replacement for a bare pointer that performs additional 
actions when an object is accessed. Typical uses include 

• counting the number of references to the real object so that it can be 
freed automatically when there are no more references (also called smart 
pointers [Ede92]). 

• loading a persistent object into memory when it's first referenced. 

• checking that the real object is locked before it's accessed to ensure that 
no other object can change it. 

Structure 

Client Subject 

RequestQ 

RealSubject 
realSubject Proxy RealSubject Proxy 

Request() RequestQ o- realSubject->Request(); 

Here's a possible object diagram of a proxy structure at run-time: 

r 
aClient 

\ 

subject subject y 
aProxy 

realSubject 
aRealSubject 

Participants 
• Proxy (ImageProxy) 

- maintains a reference that lets the proxy access the real subject. Proxy may 
refer to a Subject if the RealSubject and Subject interfaces are the same. 

- provides an interface identical to Subject's so that a proxy can by substi­
tuted for the real subject. 

- controls access to the real subject and may be responsible for creating and 
deleting it. 
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- other responsibilities depend on the kind of proxy: 

• remote proxies are responsible for encoding a request and its arguments 
and for sending the encoded request to the real subject in a different 
address space. 

• virtual proxies may cache additional information about the real subject 
so that they can postpone accessing it. For example, the ImageProxy 
from the Motivation caches the real image's extent. 

• protection proxies check that the caller has the access permissions re­
quired to perform a request. 

• Subject (Graphic) 

- defines the common interface for RealSubject and Proxy so that a Proxy 
can be used anywhere a RealSubject is expected. 

• RealSubject (Image) 

- defines the real object that the proxy represents. 

Collaborations 
• Proxy forwards requests to RealSubject when appropriate, depending on the 

kind of proxy. 

Consequences 
The Proxy pattern introduces a level of indirection when accessing an object. The 
additional indirection has many uses, depending on the kind of proxy: 

1. A remote proxy can hide the fact that an object resides in a different address 
space. 

2. A virtual proxy can perform optimizations such as creating an object on 
demand. 

3. Both protection proxies and smart references allow additional housekeeping 
tasks when an object is accessed. 

There's another optimization that the Proxy pattern can hide from the client. It's 
called copy-on-write, and it's related to creation on demand. Copying a large and 
complicated object can be an expensive operation. If the copy is never modified, 
then there's no need to incur this cost. By using a proxy to postpone the copying 
process, we ensure that we pay the price of copying the object only if it's modified. 

To make copy-on-write work, the subject must be reference counted. Copying the 
proxy will do nothing more than increment this reference count. Only when the 
client requests an operation that modifies the subject does the proxy actually copy 
it. In that case the proxy must also decrement the subject's reference count. When 
the reference count goes to zero, the subject gets deleted. 
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Copy-on-write can reduce the cost of copying heavyweight subjects significantly. 

Implementation 
The Proxy pattern can exploit the following language features: 

1. Overloading the member access operator in C++. C++ supports overloading 
operator->, the member access operator. Overloading this operator lets 
you perform additional work whenever an object is dereferenced. This can 
be helpful for implementing some kinds of proxy; the proxy behaves just like 
a pointer. 
The following example illustrates how to use this technique to implement a 
virtual proxy called ImagePtr. 

class Image; 
extern Image* LoadAnlmageFile(const char*); 

// external function 

class ImagePtr { 
public: 

ImagePtr(const char* imageFile); 
virtual ~ImagePtr(); 

virtual Image* operator->(); 
virtual Images operator*(); 

private: 
Image* Loadlmage(); 

private: 
Image* _image; 
const char* _imageFile; 

} ; 

ImagePtr::ImagePtr (const char* thelmageFile) { 
_imageFile = thelmageFile; 
_image = 0; 

) 

Image* ImagePtr::Loadlmage () { 
if (_image ==0) { 

_image = LoadAnlmageFile(_imageFile); 
} 
return _image; 

} 

The overloaded -> and * operators use Loadlmage to return .image to 
callers (loading it if necessary). 

Image* ImagePtr::operator-> () { 
return Loadlmage(); 

} 

Images ImagePtr::operator* () { 
return *Loadlmage(); 

} 
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This approach lets you call Image operations through ImagePtr objects 
without going to the trouble of making the operations part of the ImagePtr 
interface: 

ImagePtr image = ImagePtr("anlmageFileName"); 
image->Draw(Point(50, 100)); 

// (image.operator->())->Draw(Point(50, 100)) 

Notice how the image proxy acts like a pointer, but it's not declared to be a 
pointer to an Image. That means you can't use it exactly like a real pointer to 
an Image. Hence clients must treat Image and ImagePtr objects differently 
in this approach. 
Overloading the member access operator isn't a good solution for every kind 
of proxy. Some proxies need to know precisely which operation is called, and 
overloading the member access operator doesn't work in those cases. 
Consider the virtual proxy example in the Motivation. The image should 
be loaded at a specific time—namely when the Draw operation is called— 
and not whenever the image is referenced. Overloading the access operator 
doesn't allow this distinction. In that case we must manually implement each 
proxy operation that forwards the request to the subject. 
These operations are usually very similar to each other, as the Sample Code 
demonstrates. Typically all operations verify that the request is legal, that 
the original object exists, etc., before forwarding the request to the subject. 
It's tedious to write this code again and again. So it's common to use a 
preprocessor to generate it automatically. 

2. Using doesNotUnderstand in Smalltalk. Smalltalk provides a hook that 
you can use to support automatic forwarding of requests. Smalltalk calls 
doesNotUnderstand: aMessage when a client sends a message to a 
receiver that has no corresponding method. The Proxy class can redefine 
doesNotUnderstand so that the message is forwarded to its subject. 
To ensure that a request is forwarded to the subject and not just absorbed 
by the proxy silently, you can define a Proxy class that doesn't understand 
any messages. Smalltalk lets you do this by defining Proxy as a class with no 
superclass.6 

The main disadvantage of doesNotUnderstand: is that most Smalltalk 
systems have a few special messages that are handled directly by the virtual 
machine, and these do not cause the usual method look-up. The only one 
that's usually implemented in Object (and so can affect proxies) is the identity 
operation ==. 

If you're going to use doesNotUnderstand: to implement Proxy, then 
you must design around this problem. You can't expect identity on prox­
ies to mean identity on their real subjects. An added disadvantage is that 

6 The implementation of distributed objects in NEXTSTEP [Add94] (specifically, the class NXProxy) uses 
this technique. The implementation redefines forward, the equivalent hook in NEXTSTEP. 
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doesNotUnderstand: was developed for error handling, not for building 
proxies, and so it's generally not very fast. 

3. Proxy doesn't always have to know the type of real subject. If a Proxy class can 
deal with its subject solely through an abstract interface, then there's no 
need to make a Proxy class for each RealSubject class; the proxy can deal 
with all RealSubject classes uniformly. But if Proxies are going to instantiate 
RealSubjects (such as in a virtual proxy), then they have to know the concrete 
class. 

Another implementation issue involves how to refer to the subject before it's 
instantiated. Some proxies have to refer to their subject whether it's on disk or 
in memory. That means they must use some form of address space-independent 
object identifiers. We used a file name for this purpose in the Motivation. 

Sample Code 
The following code implements two kinds of proxy: the virtual proxy described in 
the Motivation section, and a proxy implemented with doesNotUnderstand: 7 

1. A virtual proxy. The Graphic class defines the interface for graphical objects: 

class Graphic { 
public: 

virtual "Graphic(); 

virtual void Draw(const Points at) = 0; 
virtual void HandleMouse(Events event) = 0; 

virtual const Points GetExtent() = 0; 

virtual void Load(istreamS from) = 0; 
virtual void Save(ostreamS to) = 0; 

protected: 
Graphic(); 

} ; 

The Image class implements the Graphic interface to display image files. 
Image overrides HandleMouse to let users resize the image interactively. 

class Image : public Graphic { 
public: 

Image(const char* file); // loads image from a file 
virtual ~Image(); 

virtual void Draw(const Points at); 
virtual void HandleMouse(Events event); 

virtual const Points GetExtent(); 

7 Iterator (257) describes another kind of proxy on page 266. 
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virtual void Load(istreamS from); 
virtual void Save(ostream& to); 

private: 
// ... 

> ;  

ImageProxy has the same interface as Image: 

class ImageProxy : public Graphic { 
public: 

ImageProxy(const char* imageFile); 
virtual ~ImageProxy(); 

virtual void Draw(const Points at); 
virtual void HandleMouse(Events event); 

virtual const Points GetExtent(); 

virtual void Load(istreamS from); 
virtual void Save(ostreamS to); 

protected: 
Image* Getlmage(); 

private: 
Image* _image; 
Point _extent; 
char* _fileName; 

} ; 

The constructor saves a local copy of the name of the file that stores the 
image, and it initializes .extent and .image: 

ImageProxy::ImageProxy (const char* fileName) { 
_fileName = strdup(fileName); 
_extent = Point::Zero; // don't know extent yet 
_image = 0; 

Image* ImageProxy::Getlmage() { 
if (_image ==0) { 

_image = new Image(_fileName); 
} 
return _image; 

The implementation of GetExtent returns the cached extent if possible; 
otherwise the image is loaded from the file. Draw loads the image, and 
HandleMouse forwards the event to the real image. 

const Points ImageProxy::GetExtent () { 
if (_extent == Point::Zero) { 

_extent = Getlmage()->GetExtent(); 
) 
return _extent; 

} 
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void ImageProxy::Draw (const Points at) { 
Getlmage()->Draw(at); 

) 

void ImageProxy::HandleMouse (Events event) { 
Getlmage()->HandleMouse(event); 

) 

The Save operation saves the cached image extent and the image file name 
to a stream. Load retrieves this information and initializes the corresponding 
members. 

void ImageProxy::Save (ostreamS to) { 
to << _extent << _fileName; 

} 

void ImageProxy::Load (istreamS from) { 
from » _extent » _fileName; 

} 

Finally, suppose we have a class Text Document that can contain Graphic 
objects: 

class TextDocument { 
public: 

TextDocument(); 

void Insert(Graphic*); 
I I . . .  

} ; 

We can insert an ImageProxy into a text document like this: 

TextDocument* text = new TextDocument; 
I I  . . .  
text->Insert(new ImageProxy("anlmageFileName")); 

2. Proxies that use doesNotUnderstand. You can make generic proxies in 
Smalltalk by defining classes whose superclass is nil8 and defining the 
doesNotUnderstand: method to handle messages. 
The following method assumes the proxy has a realSubj ect method that 
returns its real subject. In the case of ImageProxy, this method would check 
to see if the the Image had been created, create it if necessary, and finally 
return it. It uses perform: wi thArgument s : to perform the message being 
trapped on the real subject. 

doesNotUnderstand: aMessage 
* self realSubject 

perform: aMessage selector 
withArguments: aMessage arguments 

8 Almost all classes ultimately have Object as their superclass. Hence this is the same as saying "defining 
a class that doesn't have Object as its superclass." 
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The argument to doesNotUnderstand: is an instance of Message that 
represents the message not understood by the proxy. So the proxy responds 
to all messages by making sure that the real subject exists before forwarding 
the message to it. 
One of the advantages of doesNotUnderstand: is it can perform arbitrary 
processing. For example, we could produce a protection proxy by specifying 
a set legalMessages of messages to accept and then giving the proxy the 
following method: 

doesNotUnderstand: aMessage 
(legalMessages includes: aMessage selector) 

ifTrue: [self realSubject 
perform: aMessage selector 
withArguments: aMessage arguments] 

ifFalse: [self error: 'Illegal operator'] 

This method checks to see that a message is legal before forwarding it to 
the real subject. If it isn't legal, then it will send error: to the proxy, which 
will result in an infinite loop of errors unless the proxy defines error:. 
Consequently, the definition of error: should be copied from class Object 
along with any methods it uses. 

Known Uses 
The virtual proxy example in the Motivation section is from the ET++ text building 
block classes. 

NEXTSTEP [Add94] uses proxies (instances of class NXProxy) as local represen­
tatives for objects that may be distributed. A server creates proxies for remote 
objects when clients request them. On receiving a message, the proxy encodes it 
along with its arguments and then forwards the encoded message to the remote 
subject. Similarly, the subject encodes any return results and sends them back to 
the NXProxy object. 

McCullough [McC87] discusses using proxies in Smalltalk to access remote ob­
jects. Pascoe [Pas86] describes how to provide side-effects on method calls and 
access control with "Encapsulators." 

Related Patterns 
Adapter (139): An adapter provides a different interface to the object it adapts. 
In contrast, a proxy provides the same interface as its subject. However, a proxy 
used for access protection might refuse to perform an operation that the subject 
will perform, so its interface may be effectively a subset of the subject's. 

Decorator (175): Although decorators can have similar implementations as prox­
ies, decorators have a different purpose. A decorator adds one or more responsi­
bilities to an object, whereas a proxy controls access to an object. 
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Proxies vary in the degree to which they are implemented like a decorator. A 
protection proxy might be implemented exactly like a decorator. On the other 
hand, a remote proxy will not contain a direct reference to its real subject but only 
an indirect reference, such as "host ID and local address on host." A virtual proxy 
will start off with an indirect reference such as a file name but will eventually 
obtain and use a direct reference. 
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Discussion of Structural Patterns 

You may have noticed similarities between the structural patterns, especially in their 
participants and collaborations. This is so probably because structural patterns rely on 
the same small set of language mechanisms for structuring code and objects: single 
and multiple inheritance for class-based patterns, and object composition for object 
patterns. But the similarities belie the different intents among these patterns. In this 
section we compare and contrast groups of structural patterns to give you a feel for 
their relative merits. 

Adapter versus Bridge 

The Adapter (139) and Bridge (151) patterns have some common attributes. Both pro­
mote flexibility by providing a level of indirection to another object. Both involve 
forwarding requests to this object from an interface other than its own. 

The key difference between these patterns lies in their intents. Adapter focuses on 
resolving incompatibilities between two existing interfaces. It doesn't focus on how 
those interfaces are implemented, nor does it consider how they might evolve inde­
pendently. It's a way of making two independently designed classes work together 
without reimplementing one or the other. Bridge, on the other hand, bridges an ab­
straction and its (potentially numerous) implementations. It provides a stable interface 
to clients even as it lets you vary the classes that implement it. It also accommodates 
new implementations as the system evolves. 

As a result of these differences, Adapter and Bridge are often used at different points 
in the software lifecycle. An adapter often becomes necessary when you discover that 
two incompatible classes should work together, generally to avoid replicating code. The 
coupling is unforeseen. In contrast, the user of a bridge understands up-front that an 
abstraction must have several implementations, and both may evolve independently. 
The Adapter pattern makes things work after they're designed; Bridge makes them 
work before they are. That doesn't mean Adapter is somehow inferior to Bridge; each 
pattern merely addresses a different problem. 

You might think of a facade (see Facade (185)) as an adapter to a set of other objects. But 
that interpretation overlooks the fact that a facade defines a new interface, whereas an 
adapter reuses an old interface. Remember that an adapter makes two existing interfaces 
work together as opposed to defining an entirely new one. 

Composite versus Decorator versus Proxy 

Composite (163) and Decorator (175) have similar structure diagrams, reflecting the fact 
that both rely on recursive composition to organize an open-ended number of objects. 
This commonality might tempt you to think of a decorator object as a degenerate 
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composite, but that misses the point of the Decorator pattern. The similarity ends at 
recursive composition, again because of differing intents. 

Decorator is designed to let you add responsibilities to objects without subclassing. It 
avoids the explosion of subclasses that can arise from trying to cover every combination 
of responsibilities statically. Composite has a different intent. It focuses on structuring 
classes so that many related objects can be treated uniformly, and multiple objects can 
be treated as one. Its focus is not on embellishment but on representation. 

These intents are distinct but complementary. Consequently, the Composite and Deco­
rator patterns are often used in concert. Both lead to the kind of design in which you can 
build applications just by plugging objects together without defining any new classes. 
There will be an abstract class with some subclasses that are composites, some that are 
decorators, and some that implement the fundamental building blocks of the system. 
In this case, both composites and decorators will have a common interface. From the 
point of view of the Decorator pattern, a composite is a ConcreteComponent. From the 
point of view of the Composite pattern, a decorator is a Leaf. Of course, they don't have 
to be used together and, as we have seen, their intents are quite different. 

Another pattern with a structure similar to Decorator's is Proxy (207). Both patterns 
describe how to provide a level of indirection to an object, and the implementations of 
both the proxy and decorator object keep a reference to another object to which they 
forward requests. Once again, however, they are intended for different purposes. 

Like Decorator, the Proxy pattern composes an object and provides an identical in­
terface to clients. Unlike Decorator, the Proxy pattern is not concerned with attaching 
or detaching properties dynamically, and it's not designed for recursive composition. 
Its intent is to provide a stand-in for a subject when it's inconvenient or undesirable 
to access the subject directly because, for example, it lives on a remote machine, has 
restricted access, or is persistent. 

In the Proxy pattern, the subject defines the key functionality, and the proxy provides (or 
refuses) access to it. In Decorator, the component provides only part of the functionality, 
and one or more decorators furnish the rest. Decorator addresses the situation where an 
object's total functionality can't be determined at compile time, at least not conveniently. 
That open-endedness makes recursive composition an essential part of Decorator. That 
isn't the case in Proxy, because Proxy focuses on one relationship—between the proxy 
and its subject—and that relationship can be expressed statically. 

These differences are significant because they capture solutions to specific recurring 
problems in object-oriented design. But that doesn't mean these patterns can't be com­
bined. You might envision a proxy-decorator that adds functionality to a proxy, or 
a decorator-proxy that embellishes a remote object. Although such hybrids might be 
useful (we don't have real examples handy), they are divisible into patterns that are 
useful. 


